Difference between revisions of "009B Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 60: Line 60:
 
|The Fundamental Theorem of Calculus Part 2 says that  
 
|The Fundamental Theorem of Calculus Part 2 says that  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\int_0^1 \frac{d}{dx}(e^{\arctan(x)})~dx=F(1)-F(0)</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\int_0^1 \frac{d}{dx}\bigg(e^{\arctan(x)}\bigg)~dx=F(1)-F(0)</math>
 
|-
 
|-
|where &nbsp;<math>F(x)</math>&nbsp; is any antiderivative of &nbsp;<math>\frac{d}{dx}(e^{\arctan(x)}).</math>
+
|where &nbsp;<math style="vertical-align: -5px">F(x)</math>&nbsp; is any antiderivative of &nbsp;<math style="vertical-align: -15px">\frac{d}{dx}\bigg(e^{\arctan(x)}\bigg).</math>
 
|-
 
|-
 
|Thus, we can take  
 
|Thus, we can take  
Line 68: Line 68:
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>F(x)=e^{\arctan(x)}</math>  
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>F(x)=e^{\arctan(x)}</math>  
 
|-
 
|-
|since then <math>F'(x)=\frac{d}{dx}(e^{\arctan(x)}).</math>
+
|since then <math style="vertical-align: -15px">F'(x)=\frac{d}{dx}\bigg(e^{\arctan(x)}\bigg).</math>
 
|}
 
|}
  
Line 77: Line 77:
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\int_0^1 \frac{d}{dx}(e^{\arctan(x)})~dx} & = & \displaystyle{F(1)-F(0)}\\
+
\displaystyle{\int_0^1 \frac{d}{dx}\bigg(e^{\arctan(x)}\bigg)~dx} & = & \displaystyle{F(1)-F(0)}\\
 
&&\\
 
&&\\
& = & \displaystyle{e^{\arctan(1}-e^{\arctan(0)}}\\
+
& = & \displaystyle{e^{\arctan(1)}-e^{\arctan(0)}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{e^{\frac{\pi}{4}}-e^0}\\
 
& = & \displaystyle{e^{\frac{\pi}{4}}-e^0}\\

Revision as of 14:41, 4 March 2017

(a) State both parts of the Fundamental Theorem of Calculus.

(b) Evaluate the integral

(c) Compute

Foundations:  
1. What does Part 2 of the Fundamental Theorem of Calculus say about    where    are constants?

        Part 2 of the Fundamental Theorem of Calculus says that

          where    is any antiderivative of  
2. What does Part 1 of the Fundamental Theorem of Calculus say about  

        Part 1 of the Fundamental Theorem of Calculus says that

       

Solution:

(a)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
       Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}   be continuous on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]}   and let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x)=\int_a^x f(t)~dt.}
       Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F}   is a differentiable function on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a,b)}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'(x)=f(x).}
Step 2:  
The Fundamental Theorem of Calculus, Part 2
       Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}   be continuous on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]}   and let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F}   be any antiderivative of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f.}
       Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_a^b f(x)~dx=F(b)-F(a).}

(b)

Step 1:  
The Fundamental Theorem of Calculus Part 2 says that
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^1 \frac{d}{dx}\bigg(e^{\arctan(x)}\bigg)~dx=F(1)-F(0)}
where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x)}   is any antiderivative of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\bigg(e^{\arctan(x)}\bigg).}
Thus, we can take
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x)=e^{\arctan(x)}}
since then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'(x)=\frac{d}{dx}\bigg(e^{\arctan(x)}\bigg).}
Step 2:  
Now, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_0^1 \frac{d}{dx}\bigg(e^{\arctan(x)}\bigg)~dx} & = & \displaystyle{F(1)-F(0)}\\ &&\\ & = & \displaystyle{e^{\arctan(1)}-e^{\arctan(0)}}\\ &&\\ & = & \displaystyle{e^{\frac{\pi}{4}}-e^0}\\ &&\\ & = & \displaystyle{e^{\frac{\pi}{4}}-1.} \end{array}}

(c)

Step 1:  
Using the Fundamental Theorem of Calculus Part 1 and the Chain Rule, we have
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\int_1^{\frac{1}{x}} \sin t~dt=\sin\bigg(\frac{1}{x}\bigg)\frac{d}{dx}\bigg(\frac{1}{x}\bigg).}
Step 2:  
Hence, we have
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\int_1^{\frac{1}{x}} \sin t~dt=\sin\bigg(\frac{1}{x}\bigg)\bigg(-\frac{1}{x^2}\bigg).}
Final Answer:  
   (a)    See above
   (b)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{\frac{\pi}{4}}-1}
   (c)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin\bigg(\frac{1}{x}\bigg)\bigg(-\frac{1}{x^2}\bigg)}

Return to Sample Exam