Difference between revisions of "009B Sample Final 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 59: Line 59:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we calculate &nbsp;<math>\frac{dy}{dx}.</math>
 +
|-
 +
|Since <math>y=1+9x^{\frac{3}{2}},</math> we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=\frac{27\sqrt{x}}{2}.</math>
 +
|-
 +
|Then, the arc length &nbsp;<math>L</math>&nbsp; of the curve is given by
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_1^4 \sqrt{1+\bigg(\frac{27\sqrt{x}}{2}\bigg)^2}~dx.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Then, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_1^4 \sqrt{1+\frac{27^2x}{2^2}}~dx.</math>
 +
|-
 +
|Now, we use &nbsp;<math>u</math>-substitution.
 +
|-
 +
|Let &nbsp;<math>u=1+\frac{27^2x}{2^2}.</math>
 +
|-
 +
|Then, &nbsp; <math>du=\frac{27^2}{2^2}dx</math>&nbsp; and &nbsp;<math>dx=\frac{2^2}{27^2}du.</math>
 +
|-
 +
|Also, since this is a definite integral, we need to change the bounds of integration.
 +
|-
 +
|We have &nbsp; <math>u_1=1+\frac{27^2(1)}{2^2}=1+\frac{27^2}{2^2}</math>
 +
|-
 +
|and &nbsp; <math>u_2=1+\frac{27^2(4)}{2^2}=1+27^2.</math>
 +
|-
 +
|Hence, we now have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_{1+\frac{27^2}{2^2}}^{1+27^2} \frac{2^2}{27^2}u^{\frac{1}{2}}~du.</math>
 
|-
 
|-
 
|
 
|
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 
|-
 
|-
|
+
|Therefore, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{L} & = & \displaystyle{\frac{2^2}{27^2} \bigg(\frac{2}{3}u^{\frac{3}{2}}\bigg)\bigg|_{1+\frac{27^2}{2^2}}^{1+27^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{2^3}{3^4} u^{\frac{3}{2}}\bigg|_{1+\frac{27^2}{2^2}}^{1+27^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{2^3}{3^4} (1+27^2)^{\frac{3}{2}}-\frac{2^3}{3^4} \bigg(1+\frac{27^2}{2^2}\bigg)^{\frac{3}{2}}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 78: Line 116:
 
|'''(a)'''  
 
|'''(a)'''  
 
|-
 
|-
|'''(b)'''
+
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\frac{2^3}{3^4} (1+27^2)^{\frac{3}{2}}-\frac{2^3}{3^4} \bigg(1+\frac{27^2}{2^2}\bigg)^{\frac{3}{2}}</math>
 
|}
 
|}
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:32, 4 March 2017

(a) Find the area of the surface obtained by rotating the arc of the curve

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y^3=x}

between Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,0)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1,1)} about the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} -axis.

(b) Find the length of the arc

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=1+9x^{\frac{3}{2}}}

between the points Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1,10)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (4,73).}

Foundations:  
1. The formula for the length  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L}   of a curve  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x)}   where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\leq x \leq b}   is

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx.}

2. The surface area  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S}   of a function  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x)}   rotated about the  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} -axis is given by

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=\int 2\pi x\,ds,}   where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ds=\sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}.}


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
First, we calculate  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}.}
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=1+9x^{\frac{3}{2}},} we have
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}=\frac{27\sqrt{x}}{2}.}
Then, the arc length  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L}   of the curve is given by
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_1^4 \sqrt{1+\bigg(\frac{27\sqrt{x}}{2}\bigg)^2}~dx.}
Step 2:  
Then, we have
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_1^4 \sqrt{1+\frac{27^2x}{2^2}}~dx.}
Now, we use  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution.
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=1+\frac{27^2x}{2^2}.}
Then,   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=\frac{27^2}{2^2}dx}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx=\frac{2^2}{27^2}du.}
Also, since this is a definite integral, we need to change the bounds of integration.
We have   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_1=1+\frac{27^2(1)}{2^2}=1+\frac{27^2}{2^2}}
and   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_2=1+\frac{27^2(4)}{2^2}=1+27^2.}
Hence, we now have
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_{1+\frac{27^2}{2^2}}^{1+27^2} \frac{2^2}{27^2}u^{\frac{1}{2}}~du.}
Step 3:  
Therefore, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{L} & = & \displaystyle{\frac{2^2}{27^2} \bigg(\frac{2}{3}u^{\frac{3}{2}}\bigg)\bigg|_{1+\frac{27^2}{2^2}}^{1+27^2}}\\ &&\\ & = & \displaystyle{\frac{2^3}{3^4} u^{\frac{3}{2}}\bigg|_{1+\frac{27^2}{2^2}}^{1+27^2}}\\ &&\\ & = & \displaystyle{\frac{2^3}{3^4} (1+27^2)^{\frac{3}{2}}-\frac{2^3}{3^4} \bigg(1+\frac{27^2}{2^2}\bigg)^{\frac{3}{2}}.} \end{array}}


Final Answer:  
(a)
   (b)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2^3}{3^4} (1+27^2)^{\frac{3}{2}}-\frac{2^3}{3^4} \bigg(1+\frac{27^2}{2^2}\bigg)^{\frac{3}{2}}}

Return to Sample Exam