Difference between revisions of "009B Sample Final 2, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 12: Line 12:
 
|'''1.''' For &nbsp;<math>\int \frac{dx}{x^2\sqrt{x^2-16}},</math>&nbsp; what would be the correct trig substitution?
 
|'''1.''' For &nbsp;<math>\int \frac{dx}{x^2\sqrt{x^2-16}},</math>&nbsp; what would be the correct trig substitution?
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;The correct substitution is &nbsp;<math>x=4\sec^2\theta.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;The correct substitution is &nbsp;<math style="vertical-align: -1px">x=4\sec^2\theta.</math>
 
|-
 
|-
 
|'''2.''' We have the Pythagorean identity  
 
|'''2.''' We have the Pythagorean identity  
Line 35: Line 35:
 
|We start by using trig substitution.  
 
|We start by using trig substitution.  
 
|-
 
|-
|Let &nbsp;<math>x=4\sec \theta.</math>
+
|Let &nbsp;<math style="vertical-align: -1px">x=4\sec \theta.</math>
 
|-
 
|-
|Then, &nbsp;<math>dx=4\sec \theta \tan \theta ~d\theta.</math>
+
|Then, &nbsp;<math style="vertical-align: -2px">dx=4\sec \theta \tan \theta ~d\theta.</math>
 
|-
 
|-
 
|So, the integral becomes
 
|So, the integral becomes
Line 81: Line 81:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we use &nbsp;<math>u</math>-substitution.
+
|Now, we use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.
 
|-
 
|-
|Let &nbsp;<math>u=\sin x.</math>&nbsp; Then, &nbsp;<math>du=\cos x ~dx.</math>
+
|Let &nbsp;<math style="vertical-align: -1px">u=\sin x.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -1px">du=\cos x ~dx.</math>
 
|-
 
|-
 
|Since this is a definite integral, we need to change the bounds of integration.
 
|Since this is a definite integral, we need to change the bounds of integration.
Line 89: Line 89:
 
|Then, we have
 
|Then, we have
 
|-
 
|-
|&nbsp;<math>u_1=\sin(-\pi)=0</math>&nbsp; and &nbsp;<math>u_2=\sin(\pi)=0.</math>
+
|&nbsp;<math style="vertical-align: -5px">u_1=\sin(-\pi)=0</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">u_2=\sin(\pi)=0.</math>
 
|-
 
|-
 
|So, we have
 
|So, we have
Line 113: Line 113:
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{x-3}{(x+1)(x+5)}=\frac{A}{x+1}+\frac{B}{x+5}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{x-3}{(x+1)(x+5)}=\frac{A}{x+1}+\frac{B}{x+5}.</math>
 
|-
 
|-
|If we multiply both sides of this equation by &nbsp;<math>(x+1)(x+5),</math>&nbsp; we get
+
|If we multiply both sides of this equation by &nbsp;<math style="vertical-align: -5px">(x+1)(x+5),</math>&nbsp; we get
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>x-3=A(x+5)+B(x+1).</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>x-3=A(x+5)+B(x+1).</math>
 
|-
 
|-
|If we  let &nbsp;<math>x=-1,</math>&nbsp; we get &nbsp;<math>A=-1.</math>
+
|If we  let &nbsp;<math style="vertical-align: -4px">x=-1,</math>&nbsp; we get &nbsp;<math style="vertical-align: -1px">A=-1.</math>
 
|-
 
|-
|If we  let &nbsp;<math>x=-5,</math>&nbsp; we get &nbsp;<math>B=2.</math>
+
|If we  let &nbsp;<math style="vertical-align: -4px">x=-5,</math>&nbsp; we get &nbsp;<math style="vertical-align: -1px">B=2.</math>
 
|-
 
|-
 
|So, we have
 
|So, we have
Line 140: Line 140:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|Now, we use &nbsp;<math>u</math>-substitution for both of these integrals.  
+
|Now, we use &nbsp;<math style="vertical-align: 0px">u</math>-substitution for both of these integrals.  
 
|-
 
|-
|Let &nbsp;<math>u=x+1.</math>&nbsp; Then, &nbsp;<math>du=dx.</math>  
+
|Let &nbsp;<math style="vertical-align: -2px">u=x+1.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -1px">du=dx.</math>  
 
|-
 
|-
|Let &nbsp;<math>t=x+5.</math>&nbsp; Then, &nbsp;<math>dt=dx.</math>
+
|Let &nbsp;<math style="vertical-align: -3px">t=x+5.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -1px">dt=dx.</math>
 
|-
 
|-
 
|Since these are definite integrals, we need to change the bounds of integration.
 
|Since these are definite integrals, we need to change the bounds of integration.
 
|-
 
|-
|We have &nbsp;<math>u_1=0+1=1</math>&nbsp; and &nbsp;<math>u_2=1+1=2.</math>
+
|We have &nbsp;<math style="vertical-align: -4px">u_1=0+1=1</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">u_2=1+1=2.</math>
 
|-
 
|-
|Also, &nbsp;<math>t_1=0+5=5</math>&nbsp; and &nbsp;<math>u_2=1+5=6.</math>   
+
|Also, &nbsp;<math style="vertical-align: -4px">t_1=0+5=5</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">t_2=1+5=6.</math>   
 
|-
 
|-
 
|Therefore, we get
 
|Therefore, we get

Revision as of 14:26, 4 March 2017

Evaluate the following integrals:

(a)  

(b)  

(c)  

Foundations:  
1. For    what would be the correct trig substitution?
       The correct substitution is  
2. We have the Pythagorean identity
       
3. Through partial fraction decomposition, we can write the fraction
       
       for some constants


Solution:

(a)

Step 1:  
We start by using trig substitution.
Let  
Then,  
So, the integral becomes
       
Step 2:  
Now, we integrate to get
       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we use  -substitution.
Let    Then,  
Since this is a definite integral, we need to change the bounds of integration.
Then, we have
   and  
So, we have
       

(c)

Step 1:  
First, we write
       
Now, we use partial fraction decomposition. Wet set
       
If we multiply both sides of this equation by    we get
       
If we let    we get  
If we let    we get  
So, we have
       
Step 2:  
Now, we have

       

Now, we use  -substitution for both of these integrals.
Let    Then,  
Let    Then,  
Since these are definite integrals, we need to change the bounds of integration.
We have    and  
Also,    and  
Therefore, we get
       


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam