Difference between revisions of "009B Sample Final 2, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 37: Line 37:
 
|Let &nbsp;<math>x=4\sec \theta.</math>
 
|Let &nbsp;<math>x=4\sec \theta.</math>
 
|-
 
|-
|Then, &nbsp;<math>dx=4\sec \theta \tan \theta d\theta.</math>
+
|Then, &nbsp;<math>dx=4\sec \theta \tan \theta ~d\theta.</math>
 
|-
 
|-
 
|So, the integral becomes
 
|So, the integral becomes
Line 83: Line 83:
 
|Now, we use &nbsp;<math>u</math>-substitution.
 
|Now, we use &nbsp;<math>u</math>-substitution.
 
|-
 
|-
|Let &nbsp;<math>u=\sin x.</math>&nbsp; Then, &nbsp;<math>du=\cos x dx.</math>
+
|Let &nbsp;<math>u=\sin x.</math>&nbsp; Then, &nbsp;<math>du=\cos x ~dx.</math>
 
|-
 
|-
 
|Since this is a definite integral, we need to change the bounds of integration.
 
|Since this is a definite integral, we need to change the bounds of integration.
Line 113: Line 113:
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{x-3}{(x+1)(x+5)}=\frac{A}{x+1}+\frac{B}{x+5}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{x-3}{(x+1)(x+5)}=\frac{A}{x+1}+\frac{B}{x+5}.</math>
 
|-
 
|-
|If we multiply both sides of this equation by &nbsp;<math>(x+1)(x+5),</math> we get
+
|If we multiply both sides of this equation by &nbsp;<math>(x+1)(x+5),</math>&nbsp; we get
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>x-3=A(x+5)+B(x+1).</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>x-3=A(x+5)+B(x+1).</math>
 
|-
 
|-
|If we  let &nbsp;<math>x=-1,</math> we get <math>A=-1.</math>
+
|If we  let &nbsp;<math>x=-1,</math>&nbsp; we get &nbsp;<math>A=-1.</math>
 
|-
 
|-
|If we  let &nbsp;<math>x=-5,</math> we get <math>B=2.</math>
+
|If we  let &nbsp;<math>x=-5,</math>&nbsp; we get &nbsp;<math>B=2.</math>
 
|-
 
|-
 
|So, we have
 
|So, we have

Revision as of 14:16, 4 March 2017

Evaluate the following integrals:

(a)  

(b)  

(c)  

Foundations:  
1. For    what would be the correct trig substitution?
       The correct substitution is  
2. We have the Pythagorean identity
       
3. Through partial fraction decomposition, we can write the fraction
       
       for some constants


Solution:

(a)

Step 1:  
We start by using trig substitution.
Let  
Then,  
So, the integral becomes
       
Step 2:  
Now, we integrate to get
       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we use  -substitution.
Let    Then,  
Since this is a definite integral, we need to change the bounds of integration.
Then, we have
   and  
So, we have
       

(c)

Step 1:  
First, we write
       
Now, we use partial fraction decomposition. Wet set
       
If we multiply both sides of this equation by    we get
       
If we let    we get  
If we let    we get  
So, we have
       
Step 2:  
Now, we have

       

Now, we use  -substitution for both of these integrals.
Let    Then,  
Let    Then,  
Since these are definite integrals, we need to change the bounds of integration.
We have    and  
Also,    and  
Therefore, we get
       


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam