Difference between revisions of "009B Sample Final 2, Problem 6"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
| Kayla Murray (talk | contribs) | Kayla Murray (talk | contribs)  | ||
| Line 27: | Line 27: | ||
| !Step 1:     | !Step 1:     | ||
| |- | |- | ||
| − | | | + | |We start by using trig substitution.  | 
| + | |- | ||
| + | |Let  <math>x=4\sec \theta.</math> | ||
| |- | |- | ||
| − | | | + | |Then,  <math>dx=4\sec \theta \tan \theta d\theta.</math> | 
| |- | |- | ||
| − | | | + | |So, the integral becomes | 
| |- | |- | ||
| − | | | + | |        <math>\begin{array}{rcl} | 
| + | \displaystyle{\int \frac{1}{x^2\sqrt{x^2-16}}~dx} & = & \displaystyle{\int \frac{4\sec \theta \tan \theta}{16\sec^2\theta \sqrt{16\sec^2 \theta -16}}~d\theta}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\int \frac{4\sec \theta \tan \theta}{16\sec^2\theta (4\tan \theta)} ~d\theta}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\int \frac{1}{16\sec \theta} ~d\theta.} | ||
| + | \end{array}</math> | ||
| |} | |} | ||
| Line 39: | Line 47: | ||
| !Step 2:   | !Step 2:   | ||
| |- | |- | ||
| − | | | + | |Now, we integrate to get | 
| − | |||
| − | |||
| |- | |- | ||
| − | | | + | |        <math>\begin{array}{rcl} | 
| − | + | \displaystyle{\int \frac{1}{x^2\sqrt{x^2-16}}~dx} & = & \displaystyle{\frac{1}{16}\cos\theta~d\theta}\\ | |
| − | + | &&\\ | |
| + | & = & \displaystyle{\frac{1}{16}\sin \theta +C}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{1}{16}\bigg(\frac{\sqrt{x^2-16}}{x}\bigg)+C.} | ||
| + | \end{array}</math> | ||
| |} | |} | ||
| Line 53: | Line 63: | ||
| !Step 1:     | !Step 1:     | ||
| |- | |- | ||
| − | | | + | |First, we write | 
| |- | |- | ||
| − | | | + | |        <math>\begin{array}{rcl} | 
| + | \displaystyle{\int_{-\pi}^\pi \sin^3x\cos^3x~dx} & = & \displaystyle{\int_{-\pi}^{\pi} \sin^3x \cos^2x \cos x~dx}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\int_{-\pi}^{\pi} \sin^3x (1-\sin^2x)\cos x~dx.} | ||
| + | \end{array}</math> | ||
| |} | |} | ||
| Line 61: | Line 75: | ||
| !Step 2:   | !Step 2:   | ||
| |- | |- | ||
| − | | | + | |Now, we use  <math>u</math>-substitution. | 
| + | |- | ||
| + | |Let  <math>u=\sin x.</math>  Then,  <math>du=\cos x dx.</math> | ||
| + | |- | ||
| + | |Since this is a definite integral, we need to change the bounds of integration. | ||
| + | |- | ||
| + | |Then, we have | ||
| + | |- | ||
| + | | <math>u_1=\sin(-\pi)=0</math>  and  <math>u_2=\sin(\pi)=0.</math> | ||
| + | |- | ||
| + | |So, we have | ||
| |- | |- | ||
| − | | | + | |        <math>\begin{array}{rcl} | 
| + | \displaystyle{\int_{-\pi}^\pi \sin^3x\cos^3x~dx} & = & \displaystyle{\int_0^0 u^3(1-u^2)~du}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{0.} | ||
| + | \end{array}</math> | ||
| |} | |} | ||
| Line 71: | Line 99: | ||
| !Step 1:     | !Step 1:     | ||
| |- | |- | ||
| − | | | + | |First, we write | 
| + | |- | ||
| + | |       <math>\int_0^1 \frac{x-3}{x^2+6x+5}~dx=\int_0^1 \frac{x-3}{(x+1)(x+5)}~dx.</math> | ||
| + | |- | ||
| + | |Now, we use partial fraction decomposition. Wet set | ||
| + | |- | ||
| + | |       <math>\frac{x-3}{(x+1)(x+5)}=\frac{A}{x+1}+\frac{B}{x+5}.</math> | ||
| + | |- | ||
| + | |If we multiply both sides of this equation by  <math>(x+1)(x+5),</math> we get | ||
| + | |- | ||
| + | |       <math>x-3=A(x+5)+B(x+1).</math> | ||
| + | |- | ||
| + | |If we  let  <math>x=-1,</math> we get <math>A=-1.</math> | ||
| + | |- | ||
| + | |If we  let  <math>x=-5,</math> we get <math>B=2.</math> | ||
| + | |- | ||
| + | |So, we have | ||
| + | |- | ||
| + | |       <math>\frac{x-3}{(x+1)(x+5)}=\frac{-1}{x+1}+\frac{2}{x+5}.</math> | ||
| |- | |- | ||
| | | | | ||
| Line 78: | Line 124: | ||
| {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| !Step 2:   | !Step 2:   | ||
| + | |- | ||
| + | |Now, we have | ||
| |- | |- | ||
| | | | | ||
| + |         <math>\begin{array}{rcl} | ||
| + | \displaystyle{\int_0^1 \frac{x-3}{(x+1)(x+5)}~dx} & = & \displaystyle{\int_0^1 \frac{-1}{x+1}+\frac{2}{x+5}~dx}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\int_0^1 \frac{-1}{x+1}~dx+\int_0^1 \frac{2}{x+5}~dx.} | ||
| + | \end{array}</math> | ||
| |- | |- | ||
| − | | | + | |Now, we use  <math>u</math>-substitution for both of these integrals.  | 
| + | |- | ||
| + | |Let  <math>u=x+1.</math>  Then,  <math>du=dx.</math>  | ||
| + | |- | ||
| + | |Let  <math>t=x+5.</math>  Then,  <math>dt=dx.</math> | ||
| + | |- | ||
| + | |Since these are definite integrals, we need to change the bounds of integration. | ||
| + | |- | ||
| + | |We have  <math>u_1=0+1=1</math>  and  <math>u_2=1+1=2.</math> | ||
| + | |- | ||
| + | |Also,  <math>t_1=0+5=5</math>  and  <math>u_2=1+5=6.</math>   | ||
| + | |- | ||
| + | |Therefore, we get | ||
| + | |- | ||
| + | |        <math>\begin{array}{rcl} | ||
| + | \displaystyle{\int_0^1 \frac{x-3}{(x+1)(x+5)}~dx} & = & \displaystyle{\int_1^2 \frac{-1}{u}~du+\int_5^6 \frac{2}{t}~dt}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{-\ln|u|\bigg|_1^2+2\ln|t|\bigg|_5^6}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{-\ln(2)+2\ln(6)-2\ln(5).} | ||
| + | \end{array}</math> | ||
| |} | |} | ||
| Line 88: | Line 161: | ||
| !Final Answer:     | !Final Answer:     | ||
| |- | |- | ||
| − | |'''(a)'''   | + | |   '''(a)'''    <math>\frac{1}{16}\bigg(\frac{\sqrt{x^2-16}}{x}\bigg)+C</math> | 
| |- | |- | ||
| − | |'''(b)'''   | + | |   '''(b)'''    <math>0</math> | 
| |- | |- | ||
| − | |'''(c)'''   | + | |   '''(c)'''    <math>-\ln(2)+2\ln(6)-2\ln(5)</math> | 
| |} | |} | ||
| [[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 14:08, 4 March 2017
Evaluate the following integrals:
(a)
(b)
(c)
| Foundations: | 
|---|
Solution:
(a)
| Step 1: | 
|---|
| We start by using trig substitution. | 
| Let | 
| Then, | 
| So, the integral becomes | 
| Step 2: | 
|---|
| Now, we integrate to get | 
(b)
| Step 1: | 
|---|
| First, we write | 
| Step 2: | 
|---|
| Now, we use -substitution. | 
| Let Then, | 
| Since this is a definite integral, we need to change the bounds of integration. | 
| Then, we have | 
| and | 
| So, we have | 
(c)
| Step 1: | 
|---|
| First, we write | 
| Now, we use partial fraction decomposition. Wet set | 
| If we multiply both sides of this equation by we get | 
| If we let we get | 
| If we let we get | 
| So, we have | 
| Step 2: | 
|---|
| Now, we have | 
| 
 | 
| Now, we use -substitution for both of these integrals. | 
| Let Then, | 
| Let Then, | 
| Since these are definite integrals, we need to change the bounds of integration. | 
| We have and | 
| Also, and | 
| Therefore, we get | 
| Final Answer: | 
|---|
| (a) | 
| (b) | 
| (c) |