Difference between revisions of "009B Sample Final 2, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 27: | Line 27: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |We start by using trig substitution. |
+ | |- | ||
+ | |Let <math>x=4\sec \theta.</math> | ||
|- | |- | ||
− | | | + | |Then, <math>dx=4\sec \theta \tan \theta d\theta.</math> |
|- | |- | ||
− | | | + | |So, the integral becomes |
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{\int \frac{1}{x^2\sqrt{x^2-16}}~dx} & = & \displaystyle{\int \frac{4\sec \theta \tan \theta}{16\sec^2\theta \sqrt{16\sec^2 \theta -16}}~d\theta}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int \frac{4\sec \theta \tan \theta}{16\sec^2\theta (4\tan \theta)} ~d\theta}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int \frac{1}{16\sec \theta} ~d\theta.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 39: | Line 47: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we integrate to get |
− | |||
− | |||
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
− | + | \displaystyle{\int \frac{1}{x^2\sqrt{x^2-16}}~dx} & = & \displaystyle{\frac{1}{16}\cos\theta~d\theta}\\ | |
− | + | &&\\ | |
+ | & = & \displaystyle{\frac{1}{16}\sin \theta +C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{16}\bigg(\frac{\sqrt{x^2-16}}{x}\bigg)+C.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 53: | Line 63: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |First, we write |
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{\int_{-\pi}^\pi \sin^3x\cos^3x~dx} & = & \displaystyle{\int_{-\pi}^{\pi} \sin^3x \cos^2x \cos x~dx}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int_{-\pi}^{\pi} \sin^3x (1-\sin^2x)\cos x~dx.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 61: | Line 75: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we use <math>u</math>-substitution. |
+ | |- | ||
+ | |Let <math>u=\sin x.</math> Then, <math>du=\cos x dx.</math> | ||
+ | |- | ||
+ | |Since this is a definite integral, we need to change the bounds of integration. | ||
+ | |- | ||
+ | |Then, we have | ||
+ | |- | ||
+ | | <math>u_1=\sin(-\pi)=0</math> and <math>u_2=\sin(\pi)=0.</math> | ||
+ | |- | ||
+ | |So, we have | ||
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{\int_{-\pi}^\pi \sin^3x\cos^3x~dx} & = & \displaystyle{\int_0^0 u^3(1-u^2)~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{0.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 71: | Line 99: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |First, we write |
+ | |- | ||
+ | | <math>\int_0^1 \frac{x-3}{x^2+6x+5}~dx=\int_0^1 \frac{x-3}{(x+1)(x+5)}~dx.</math> | ||
+ | |- | ||
+ | |Now, we use partial fraction decomposition. Wet set | ||
+ | |- | ||
+ | | <math>\frac{x-3}{(x+1)(x+5)}=\frac{A}{x+1}+\frac{B}{x+5}.</math> | ||
+ | |- | ||
+ | |If we multiply both sides of this equation by <math>(x+1)(x+5),</math> we get | ||
+ | |- | ||
+ | | <math>x-3=A(x+5)+B(x+1).</math> | ||
+ | |- | ||
+ | |If we let <math>x=-1,</math> we get <math>A=-1.</math> | ||
+ | |- | ||
+ | |If we let <math>x=-5,</math> we get <math>B=2.</math> | ||
+ | |- | ||
+ | |So, we have | ||
+ | |- | ||
+ | | <math>\frac{x-3}{(x+1)(x+5)}=\frac{-1}{x+1}+\frac{2}{x+5}.</math> | ||
|- | |- | ||
| | | | ||
Line 78: | Line 124: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Now, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\int_0^1 \frac{x-3}{(x+1)(x+5)}~dx} & = & \displaystyle{\int_0^1 \frac{-1}{x+1}+\frac{2}{x+5}~dx}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int_0^1 \frac{-1}{x+1}~dx+\int_0^1 \frac{2}{x+5}~dx.} | ||
+ | \end{array}</math> | ||
|- | |- | ||
− | | | + | |Now, we use <math>u</math>-substitution for both of these integrals. |
+ | |- | ||
+ | |Let <math>u=x+1.</math> Then, <math>du=dx.</math> | ||
+ | |- | ||
+ | |Let <math>t=x+5.</math> Then, <math>dt=dx.</math> | ||
+ | |- | ||
+ | |Since these are definite integrals, we need to change the bounds of integration. | ||
+ | |- | ||
+ | |We have <math>u_1=0+1=1</math> and <math>u_2=1+1=2.</math> | ||
+ | |- | ||
+ | |Also, <math>t_1=0+5=5</math> and <math>u_2=1+5=6.</math> | ||
+ | |- | ||
+ | |Therefore, we get | ||
+ | |- | ||
+ | | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\int_0^1 \frac{x-3}{(x+1)(x+5)}~dx} & = & \displaystyle{\int_1^2 \frac{-1}{u}~du+\int_5^6 \frac{2}{t}~dt}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-\ln|u|\bigg|_1^2+2\ln|t|\bigg|_5^6}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-\ln(2)+2\ln(6)-2\ln(5).} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 88: | Line 161: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' | + | | '''(a)''' <math>\frac{1}{16}\bigg(\frac{\sqrt{x^2-16}}{x}\bigg)+C</math> |
|- | |- | ||
− | |'''(b)''' | + | | '''(b)''' <math>0</math> |
|- | |- | ||
− | |'''(c)''' | + | | '''(c)''' <math>-\ln(2)+2\ln(6)-2\ln(5)</math> |
|} | |} | ||
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 14:08, 4 March 2017
Evaluate the following integrals:
(a)
(b)
(c)
Foundations: |
---|
Solution:
(a)
Step 1: |
---|
We start by using trig substitution. |
Let |
Then, |
So, the integral becomes |
Step 2: |
---|
Now, we integrate to get |
(b)
Step 1: |
---|
First, we write |
Step 2: |
---|
Now, we use -substitution. |
Let Then, |
Since this is a definite integral, we need to change the bounds of integration. |
Then, we have |
and |
So, we have |
(c)
Step 1: |
---|
First, we write |
Now, we use partial fraction decomposition. Wet set |
If we multiply both sides of this equation by we get |
If we let we get |
If we let we get |
So, we have |
Step 2: |
---|
Now, we have |
|
Now, we use -substitution for both of these integrals. |
Let Then, |
Let Then, |
Since these are definite integrals, we need to change the bounds of integration. |
We have and |
Also, and |
Therefore, we get |
Final Answer: |
---|
(a) |
(b) |
(c) |