Difference between revisions of "009B Sample Final 2, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 72: Line 72:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we write
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_0^1 \frac{3\ln x}{\sqrt{x}}~dx=\lim_{a\rightarrow 0} \int_a^1 \frac{3\ln x}{\sqrt{x}}~dx.</math>
 +
|-
 +
|Now, we use integration by parts.
 +
|-
 +
|Let &nbsp;<math style="vertical-align: -2px">u=3\ln x</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">dv=\frac{1}{\sqrt{x}}dx.</math>
 +
|-
 +
|Then, &nbsp;<math style="vertical-align: -13px">du=\frac{3}{x}dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">v=2\sqrt{x}.</math>
 +
|-
 +
|Using integration by parts, we get
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int_0^1 \frac{3\ln x}{\sqrt{x}}~dx} & = & \displaystyle{\lim_{a\rightarrow 0} (3\ln x)(2\sqrt{x})\bigg|_a^1-\int_a^1 \frac{6}{\sqrt{x}}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{a\rightarrow 0} 6\sqrt{x}\ln(x)-12\sqrt{x}\bigg|_a^1.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 80: Line 94:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, using L'Hopital's Rule, we get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int_0^1 \frac{3\ln x}{\sqrt{x}}~dx} & = & \displaystyle{\lim_{a\rightarrow 0} (6\sqrt{1}\ln(1)-12\sqrt{1})-(6\sqrt{a}\ln(a)-12\sqrt{a})}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{a\rightarrow 0} -12 -6\sqrt{a}\ln(a) +12\sqrt{a}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{a\rightarrow 0} -12 -6\sqrt{a}\ln(a)+0}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 0} -12-6\sqrt{x}\ln(x)}\\
 +
&&\\
 +
& = & \displaystyle{-12-\lim_{x\rightarrow 0} \frac{6\ln(x)}{\frac{1}{\sqrt{x}}}}\\
 +
&&\\
 +
& \overset{L'H}{=} & \displaystyle{-12-\lim_{x\rightarrow 0} \frac{\frac{6}{x}}{-\frac{1}{2x^{3/2}}}}\\
 +
&&\\
 +
& = & \displaystyle{-12+\lim_{x\rightarrow 0} 12\sqrt{x}}\\
 +
&&\\
 +
& = & \displaystyle{-12.}
 +
\end{array}</math>
 
|-
 
|-
 
|
 
|
Line 91: Line 123:
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math>\frac{1}{9}</math>
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math>\frac{1}{9}</math>
 
|-
 
|-
|'''(b)'''  
+
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>-12</math>
 
|}
 
|}
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:28, 3 March 2017

Evaluate the following integrals or show that they are divergent:

(a)  

(b)  

Foundations:  
1. How could you write   so that you can integrate?

        You can write   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{\infty} f(x)~dx=\lim_{a\rightarrow\infty} \int_0^a f(x)~dx.}

2. How could you write   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{0}^1 \frac{1}{x}~dx?}

        The problem is that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{x}}   is not continuous at  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0.}

        So, you can write  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{0}^1 \frac{1}{x}~dx=\lim_{a\rightarrow 0} \int_{a}^1 \frac{1}{x}~dx.}


Solution:

(a)

Step 1:  
First, we write
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_1^\infty \frac{\ln x}{x^4}~dx=\lim_{a\rightarrow \infty} \int_1^a \frac{\ln x}{x^4}~dx.}
Now, we use integration by parts.
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\ln x}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=\frac{1}{x^4}dx.}
Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=\frac{1}{x}dx}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=\frac{1}{-3x^3}.}
Using integration by parts, we get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_1^\infty \frac{\ln x}{x^4}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln x}{-3x^3}\bigg|_1^a+\int_1^a \frac{1}{3x^4}~dx}\\ &&\\ & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln x}{-3x^3}-\frac{1}{9x^3}\bigg|_1^a.} \end{array}}
Step 2:  
Now, using L'Hopital's Rule, we get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_1^\infty \frac{\ln x}{x^4}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln a}{-3a^3}-\frac{1}{9a^3}-\bigg(\frac{\ln 1}{-3}-\frac{1}{9}\bigg)}\\ &&\\ & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln(a)}{-3a^3}+0+0+\frac{1}{9}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln(x)}{-3x^3}+\frac{1}{9}}\\ &&\\ & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{x}}{-9x^2}+\frac{1}{9}}\\ &&\\ & = & \displaystyle{\frac{1}{9}.} \end{array}}

(b)

Step 1:  
First, we write
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^1 \frac{3\ln x}{\sqrt{x}}~dx=\lim_{a\rightarrow 0} \int_a^1 \frac{3\ln x}{\sqrt{x}}~dx.}
Now, we use integration by parts.
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=3\ln x}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=\frac{1}{\sqrt{x}}dx.}
Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=\frac{3}{x}dx}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=2\sqrt{x}.}
Using integration by parts, we get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_0^1 \frac{3\ln x}{\sqrt{x}}~dx} & = & \displaystyle{\lim_{a\rightarrow 0} (3\ln x)(2\sqrt{x})\bigg|_a^1-\int_a^1 \frac{6}{\sqrt{x}}~dx}\\ &&\\ & = & \displaystyle{\lim_{a\rightarrow 0} 6\sqrt{x}\ln(x)-12\sqrt{x}\bigg|_a^1.} \end{array}}
Step 2:  
Now, using L'Hopital's Rule, we get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_0^1 \frac{3\ln x}{\sqrt{x}}~dx} & = & \displaystyle{\lim_{a\rightarrow 0} (6\sqrt{1}\ln(1)-12\sqrt{1})-(6\sqrt{a}\ln(a)-12\sqrt{a})}\\ &&\\ & = & \displaystyle{\lim_{a\rightarrow 0} -12 -6\sqrt{a}\ln(a) +12\sqrt{a}}\\ &&\\ & = & \displaystyle{\lim_{a\rightarrow 0} -12 -6\sqrt{a}\ln(a)+0}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0} -12-6\sqrt{x}\ln(x)}\\ &&\\ & = & \displaystyle{-12-\lim_{x\rightarrow 0} \frac{6\ln(x)}{\frac{1}{\sqrt{x}}}}\\ &&\\ & \overset{L'H}{=} & \displaystyle{-12-\lim_{x\rightarrow 0} \frac{\frac{6}{x}}{-\frac{1}{2x^{3/2}}}}\\ &&\\ & = & \displaystyle{-12+\lim_{x\rightarrow 0} 12\sqrt{x}}\\ &&\\ & = & \displaystyle{-12.} \end{array}}


Final Answer:  
   (a)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{9}}
   (b)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -12}

Return to Sample Exam