Difference between revisions of "009B Sample Final 3, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
 +
|-
 +
|'''1.''' You can find the intersection points of two functions, say &nbsp; <math style="vertical-align: -5px">f(x),g(x),</math>
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; by setting &nbsp;<math style="vertical-align: -5px">f(x)=g(x)</math>&nbsp; and solving for &nbsp;<math style="vertical-align: 0px">x.</math>
 +
|-
 +
|'''2.''' The volume of a solid obtained by rotating a region around the &nbsp;<math style="vertical-align: 0px">x</math>-axis using disk method is given by 
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int \pi r^2~dx,</math>&nbsp; where &nbsp;<math style="vertical-align: 0px">r</math>&nbsp; is the radius of the disk.
 
|-
 
|-
 
|
 
|

Revision as of 10:18, 3 March 2017

Find the volume of the solid obtained by rotating about the  -axis the region bounded by    and  

Foundations:  
1. You can find the intersection points of two functions, say  

        by setting    and solving for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x.}

2. The volume of a solid obtained by rotating a region around the  -axis using disk method is given by

          where    is the radius of the disk.


Solution:

Step 1:  
Step 2:  


Final Answer:  

Return to Sample Exam