Difference between revisions of "009B Sample Final 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 12: Line 12:
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math>
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;for some constants <math style="vertical-align: -4px">A,B.</math>
+
|for some constants <math style="vertical-align: -4px">A,B.</math>
 
|}
 
|}
  
Line 33: Line 33:
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{3x-1}{x(2x-1)}=\frac{A}{x}+\frac{B}{2x-1}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{3x-1}{x(2x-1)}=\frac{A}{x}+\frac{B}{2x-1}.</math>
 
|-
 
|-
|If we multiply both sides of this equation by <math>x(2x-1),</math> we get  
+
|If we multiply both sides of this equation by &nbsp;<math>x(2x-1),</math>&nbsp; we get  
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>3x-1=A(2x-1)+Bx.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>3x-1=A(2x-1)+Bx.</math>
Line 41: Line 41:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, if we let <math>x=0,</math> we get <math>A=1.</math>
+
|Now, if we let &nbsp;<math>x=0,</math>&nbsp; we get &nbsp;<math>A=1.</math>
 
|-
 
|-
|If we let <math>x=\frac{1}{2},</math> we get <math>B=1.</math>  
+
|If we let &nbsp;<math>x=\frac{1}{2},</math>&nbsp; we get &nbsp;<math>B=1.</math>  
 
|-
 
|-
 
|Therefore,  
 
|Therefore,  
Line 63: Line 63:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|Now, we use <math>u</math>-substitution.  
+
|Now, we use &nbsp;<math>u</math>-substitution.  
 
|-
 
|-
|Let <math>u=2x-1.</math>
+
|Let &nbsp;<math>u=2x-1.</math>
 
|-
 
|-
|Then, <math>du=2dx</math> and <math>\frac{du}{2}=dx.</math>
+
|Then, &nbsp;<math>du=2dx</math>&nbsp; and &nbsp;<math>\frac{du}{2}=dx.</math>
 
|-
 
|-
 
|Hence, we have
 
|Hence, we have
Line 85: Line 85:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We begin by using <math>u</math>-substitution.  
+
|We begin by using &nbsp;<math>u</math>-substitution.  
 
|-
 
|-
|Let <math>u=\sqrt{x+1}.</math>
+
|Let &nbsp;<math>u=\sqrt{x+1}.</math>
 
|-
 
|-
|Then, <math>u^2=x+1</math> and <math>x=u^2-1.</math>
+
|Then, &nbsp;<math>u^2=x+1</math>&nbsp; and &nbsp;<math>x=u^2-1.</math>
 
|-
 
|-
 
|Also, we have  
 
|Also, we have  
Line 101: Line 101:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|Hence, <math>dx=2udu</math>.
+
|Hence, &nbsp;<math>dx=2udu.</math>
 
|-
 
|-
 
|Using all this information, we get
 
|Using all this information, we get
 
|-
 
|-
|<math>\int \frac{\sqrt{x+1}}{x}~dx=\int \frac{2u^2}{u^2-1}~du.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int \frac{\sqrt{x+1}}{x}~dx=\int \frac{2u^2}{u^2-1}~du.</math>
 
|}
 
|}
  
Line 131: Line 131:
 
|Now, for the remaining integral, we use partial fraction decomposition.  
 
|Now, for the remaining integral, we use partial fraction decomposition.  
 
|-
 
|-
|Let <math>\frac{2}{(x-1)(x+1)}=\frac{A}{x+1}+\frac{B}{x-1}.</math>
+
|Let &nbsp;<math>\frac{2}{(x-1)(x+1)}=\frac{A}{x+1}+\frac{B}{x-1}.</math>
 
|-
 
|-
|Then, we multiply this equation by <math>(x-1)(x+1)</math> to get
+
|Then, we multiply this equation by &nbsp;<math>(x-1)(x+1)</math>&nbsp; to get
 
|-
 
|-
|<math>2=A(x-1)+B(x+1).</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>2=A(x-1)+B(x+1).</math>
 
|-
 
|-
|If we let <math>x=1,</math> we get <math>B=1.</math>
+
|If we let &nbsp;<math>x=1,</math>&nbsp; we get &nbsp;<math>B=1.</math>
 
|-
 
|-
|If we let <math>x=-1,</math> we get <math>A=-1.</math>
+
|If we let &nbsp;<math>x=-1,</math>&nbsp; we get &nbsp;<math>A=-1.</math>
 
|-
 
|-
|Thus, we have <math>\frac{2}{(x-1)(x+1)}=\frac{-1}{x+1}+\frac{1}{x-1}.</math>
+
|Thus, we have &nbsp;<math>\frac{2}{(x-1)(x+1)}=\frac{-1}{x+1}+\frac{1}{x-1}.</math>
 
|-
 
|-
 
|Using this equation, we have
 
|Using this equation, we have
Line 155: Line 155:
 
!Step 4: &nbsp;
 
!Step 4: &nbsp;
 
|-
 
|-
|To complete this integral, we need to use <math>u</math>-substitution.
+
|To complete this integral, we need to use &nbsp;<math>u</math>-substitution.
 
|-
 
|-
|For the first integral, let <math>t=u+1.</math> Then, <math>dt=du.</math>
+
|For the first integral, let &nbsp;<math>t=u+1.</math>&nbsp; Then, &nbsp;<math>dt=du.</math>
 
|-
 
|-
|For the second integral, let <math>v=u-1.</math> Then, <math>dv=du.</math>
+
|For the second integral, let &nbsp;<math>v=u-1.</math>&nbsp; Then, &nbsp;<math>dv=du.</math>
 
|-
 
|-
 
|Finally, we integrate to get
 
|Finally, we integrate to get

Revision as of 10:00, 3 March 2017

Find the following integrals

(a)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{3x-1}{2x^2-x}~dx}

(b)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{\sqrt{x+1}}{x}~dx}

Foundations:  
Through partial fraction decomposition, we can write the fraction
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}}
for some constants Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A,B.}


Solution:

(a)

Step 1:  
First, we factor the denominator to get
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{3x-1}{2x^2-x}~dx=\int \frac{3x-1}{x(2x-1)}.}
We use the method of partial fraction decomposition.
We let
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3x-1}{x(2x-1)}=\frac{A}{x}+\frac{B}{2x-1}.}
If we multiply both sides of this equation by  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(2x-1),}   we get
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3x-1=A(2x-1)+Bx.}
Step 2:  
Now, if we let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0,}   we get  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=1.}
If we let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\frac{1}{2},}   we get  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B=1.}
Therefore,
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3x-1}{x(2x-1)}=\frac{1}{x}+\frac{1}{2x-1}.}
Step 3:  
Therefore, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int \frac{3x-1}{2x^2-x}~dx} & = & \displaystyle{\int \frac{1}{x}+\frac{1}{2x-1}~dx}\\ &&\\ & = & \displaystyle{\int \frac{1}{x}~dx+\int \frac{1}{2x-1}~dx}\\ &&\\ & = & \displaystyle{\ln |x|+\int \frac{1}{2x-1}~dx.} \end{array}}
Now, we use  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution.
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=2x-1.}
Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=2dx}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{du}{2}=dx.}
Hence, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int \frac{3x-1}{2x^2-x}~dx} & = & \displaystyle{\ln |x|+\frac{1}{2}\int \frac{1}{u}~du}\\ &&\\ & = & \displaystyle{\ln |x|+\frac{1}{2}\ln |u|+C}\\ &&\\ & = & \displaystyle{\ln |x|+\frac{1}{2}\ln |2x-1|+C.} \end{array}}

(b)

Step 1:  
We begin by using  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution.
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\sqrt{x+1}.}
Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u^2=x+1}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=u^2-1.}
Also, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{du} & = & \displaystyle{\frac{1}{2} (x+1)^{\frac{-1}{2}}dx}\\ &&\\ & = & \displaystyle{\frac{1}{2\sqrt{x+1}}dx}\\ &&\\ & = & \displaystyle{\frac{1}{2u}dx.} \end{array}}
Hence,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx=2udu.}
Using all this information, we get
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{\sqrt{x+1}}{x}~dx=\int \frac{2u^2}{u^2-1}~du.}
Step 2:  
Now, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int \frac{\sqrt{x+1}}{x}~dx} & = & \displaystyle{\int \frac{2u^2-2+2}{u^2-1}~du}\\ &&\\ & = & \displaystyle{\int \frac{2(u^2-1)}{u^2-1}~du+\int \frac{2}{u^2-1}~du}\\ &&\\ & = & \displaystyle{\int 2~du+\int \frac{2}{u^2-1}~du}\\ &&\\ & = & \displaystyle{2u+\int \frac{2}{u^2-1}~du}\\ &&\\ & = & \displaystyle{2\sqrt{x+1}+\int \frac{2}{(u-1)(u+1)}~du.} \end{array}}
Step 3:  
Now, for the remaining integral, we use partial fraction decomposition.
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{(x-1)(x+1)}=\frac{A}{x+1}+\frac{B}{x-1}.}
Then, we multiply this equation by  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x-1)(x+1)}   to get
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2=A(x-1)+B(x+1).}
If we let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=1,}   we get  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B=1.}
If we let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=-1,}   we get  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=-1.}
Thus, we have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{(x-1)(x+1)}=\frac{-1}{x+1}+\frac{1}{x-1}.}
Using this equation, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int \frac{\sqrt{x+1}}{x}~dx} & = & \displaystyle{2\sqrt{x+1}+\int \frac{-1}{(u+1)}+\frac{1}{u-1}~du}\\ &&\\ & = & \displaystyle{2\sqrt{x+1}+\int \frac{-1}{(u+1)}~du+\int \frac{1}{u-1}~du.}\\ \end{array}}
Step 4:  
To complete this integral, we need to use  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution.
For the first integral, let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=u+1.}   Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dt=du.}
For the second integral, let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=u-1.}   Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=du.}
Finally, we integrate to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int \frac{\sqrt{x+1}}{x}~dx} & = & \displaystyle{2\sqrt{x+1}+\int \frac{-1}{t}~dt+\int \frac{1}{v}~dv}\\ &&\\ & = & \displaystyle{2\sqrt{x+1}+\ln|t|+\ln|v|+C}\\ &&\\ & = & \displaystyle{2\sqrt{x+1}+\ln|u+1|+\ln|u-1|+C}\\ &&\\ & = & \displaystyle{2\sqrt{x+1}+\ln|\sqrt{x+1}+1|+\ln|\sqrt{x+1}-1|+C.} \end{array}}


Final Answer:  
   (a)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln |x|+\frac{1}{2}\ln |2x-1|+C}
   (b)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\sqrt{x+1}+\ln|\sqrt{x+1}+1|+\ln|\sqrt{x+1}-1|+C}

Return to Sample Exam