Difference between revisions of "009B Sample Final 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 105: Line 105:
 
|Using all this information, we get
 
|Using all this information, we get
 
|-
 
|-
|
+
|<math>\int \frac{\sqrt{x+1}}{x}~dx=\int \frac{2u^2}{u^2-1}~du.</math>
 
|}
 
|}
  
Line 111: Line 111:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{\sqrt{x+1}}{x}~dx} & = & \displaystyle{\int \frac{2u^2-2+2}{u^2-1}~du}\\
 +
&&\\
 +
& = & \displaystyle{\int \frac{2(u^2-1)}{u^2-1}~du+\int \frac{2}{u^2-1}~du}\\
 +
&&\\
 +
& = & \displaystyle{\int 2~du+\int \frac{2}{u^2-1}~du}\\
 +
&&\\
 +
& = & \displaystyle{2u+\int \frac{2}{u^2-1}~du}\\
 +
&&\\
 +
& = & \displaystyle{2\sqrt{x+1}+\int \frac{2}{(u-1)(u+1)}~du.}
 +
\end{array}</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Now, for the remaining integral, we use partial fraction decomposition.
 +
|-
 +
|Let <math>\frac{2}{(x-1)(x+1)}=\frac{A}{x+1}+\frac{B}{x-1}.</math>
 +
|-
 +
|Then, we multiply this equation by <math>(x-1)(x+1)</math> to get
 +
|-
 +
|<math>2=A(x-1)+B(x+1).</math>
 +
|-
 +
|If we let <math>x=1,</math> we get <math>B=1.</math>
 +
|-
 +
|If we let <math>x=-1,</math> we get <math>A=-1.</math>
 +
|-
 +
|Thus, we have <math>\frac{2}{(x-1)(x+1)}=\frac{-1}{x+1}+\frac{1}{x-1}.</math>
 +
|-
 +
|Using this equation, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{\sqrt{x+1}}{x}~dx} & = & \displaystyle{2\sqrt{x+1}+\int \frac{-1}{(u+1)}+\frac{1}{u-1}~du}\\
 +
&&\\
 +
& = & \displaystyle{2\sqrt{x+1}+\int \frac{-1}{(u+1)}~du+\int \frac{1}{u-1}~du.}\\
 +
\end{array}</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 4: &nbsp;
 +
|-
 +
|To complete this integral, we need to use <math>u</math>-substitution.
 +
|-
 +
|For the first integral, let <math>t=u+1.</math> Then, <math>dt=du.</math>
 +
|-
 +
|For the second integral, let <math>v=u-1.</math> Then, <math>dv=du.</math>
 +
|-
 +
|Finally, we integrate to get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{\sqrt{x+1}}{x}~dx} & = & \displaystyle{2\sqrt{x+1}+\int \frac{-1}{t}~dt+\int \frac{1}{v}~dv}\\
 +
&&\\
 +
& = & \displaystyle{2\sqrt{x+1}+\ln|t|+\ln|v|+C}\\
 +
&&\\
 +
& = & \displaystyle{2\sqrt{x+1}+\ln|u+1|+\ln|u-1|+C}\\
 +
&&\\
 +
& = & \displaystyle{2\sqrt{x+1}+\ln|\sqrt{x+1}+1|+\ln|\sqrt{x+1}-1|+C.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 122: Line 180:
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp;<math>\ln |x|+\frac{1}{2}\ln |2x-1|+C</math>  
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp;<math>\ln |x|+\frac{1}{2}\ln |2x-1|+C</math>  
 
|-
 
|-
|'''(b)'''  
+
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp;<math>2\sqrt{x+1}+\ln|\sqrt{x+1}+1|+\ln|\sqrt{x+1}-1|+C</math>
 
|}
 
|}
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 09:56, 3 March 2017

Find the following integrals

(a)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{3x-1}{2x^2-x}~dx}

(b)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{\sqrt{x+1}}{x}~dx}

Foundations:  
Through partial fraction decomposition, we can write the fraction
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}}
       for some constants Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A,B.}


Solution:

(a)

Step 1:  
First, we factor the denominator to get
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{3x-1}{2x^2-x}~dx=\int \frac{3x-1}{x(2x-1)}.}
We use the method of partial fraction decomposition.
We let
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3x-1}{x(2x-1)}=\frac{A}{x}+\frac{B}{2x-1}.}
If we multiply both sides of this equation by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(2x-1),} we get
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3x-1=A(2x-1)+Bx.}
Step 2:  
Now, if we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0,} we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=1.}
If we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\frac{1}{2},} we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B=1.}
Therefore,
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3x-1}{x(2x-1)}=\frac{1}{x}+\frac{1}{2x-1}.}
Step 3:  
Therefore, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int \frac{3x-1}{2x^2-x}~dx} & = & \displaystyle{\int \frac{1}{x}+\frac{1}{2x-1}~dx}\\ &&\\ & = & \displaystyle{\int \frac{1}{x}~dx+\int \frac{1}{2x-1}~dx}\\ &&\\ & = & \displaystyle{\ln |x|+\int \frac{1}{2x-1}~dx.} \end{array}}
Now, we use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution.
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=2x-1.}
Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=2dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{du}{2}=dx.}
Hence, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int \frac{3x-1}{2x^2-x}~dx} & = & \displaystyle{\ln |x|+\frac{1}{2}\int \frac{1}{u}~du}\\ &&\\ & = & \displaystyle{\ln |x|+\frac{1}{2}\ln |u|+C}\\ &&\\ & = & \displaystyle{\ln |x|+\frac{1}{2}\ln |2x-1|+C.} \end{array}}

(b)

Step 1:  
We begin by using Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution.
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\sqrt{x+1}.}
Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u^2=x+1} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=u^2-1.}
Also, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{du} & = & \displaystyle{\frac{1}{2} (x+1)^{\frac{-1}{2}}dx}\\ &&\\ & = & \displaystyle{\frac{1}{2\sqrt{x+1}}dx}\\ &&\\ & = & \displaystyle{\frac{1}{2u}dx.} \end{array}}
Hence, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx=2udu} .
Using all this information, we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{\sqrt{x+1}}{x}~dx=\int \frac{2u^2}{u^2-1}~du.}
Step 2:  
Now, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int \frac{\sqrt{x+1}}{x}~dx} & = & \displaystyle{\int \frac{2u^2-2+2}{u^2-1}~du}\\ &&\\ & = & \displaystyle{\int \frac{2(u^2-1)}{u^2-1}~du+\int \frac{2}{u^2-1}~du}\\ &&\\ & = & \displaystyle{\int 2~du+\int \frac{2}{u^2-1}~du}\\ &&\\ & = & \displaystyle{2u+\int \frac{2}{u^2-1}~du}\\ &&\\ & = & \displaystyle{2\sqrt{x+1}+\int \frac{2}{(u-1)(u+1)}~du.} \end{array}}
Step 3:  
Now, for the remaining integral, we use partial fraction decomposition.
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{(x-1)(x+1)}=\frac{A}{x+1}+\frac{B}{x-1}.}
Then, we multiply this equation by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x-1)(x+1)} to get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2=A(x-1)+B(x+1).}
If we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=1,} we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B=1.}
If we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=-1,} we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=-1.}
Thus, we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{(x-1)(x+1)}=\frac{-1}{x+1}+\frac{1}{x-1}.}
Using this equation, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int \frac{\sqrt{x+1}}{x}~dx} & = & \displaystyle{2\sqrt{x+1}+\int \frac{-1}{(u+1)}+\frac{1}{u-1}~du}\\ &&\\ & = & \displaystyle{2\sqrt{x+1}+\int \frac{-1}{(u+1)}~du+\int \frac{1}{u-1}~du.}\\ \end{array}}
Step 4:  
To complete this integral, we need to use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution.
For the first integral, let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=u+1.} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dt=du.}
For the second integral, let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=u-1.} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=du.}
Finally, we integrate to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int \frac{\sqrt{x+1}}{x}~dx} & = & \displaystyle{2\sqrt{x+1}+\int \frac{-1}{t}~dt+\int \frac{1}{v}~dv}\\ &&\\ & = & \displaystyle{2\sqrt{x+1}+\ln|t|+\ln|v|+C}\\ &&\\ & = & \displaystyle{2\sqrt{x+1}+\ln|u+1|+\ln|u-1|+C}\\ &&\\ & = & \displaystyle{2\sqrt{x+1}+\ln|\sqrt{x+1}+1|+\ln|\sqrt{x+1}-1|+C.} \end{array}}


Final Answer:  
   (a)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln |x|+\frac{1}{2}\ln |2x-1|+C}
   (b)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\sqrt{x+1}+\ln|\sqrt{x+1}+1|+\ln|\sqrt{x+1}-1|+C}

Return to Sample Exam