Difference between revisions of "009B Sample Final 3, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 25: Line 25:
 
|We use the Direct Comparison Test for Improper Integrals.
 
|We use the Direct Comparison Test for Improper Integrals.
 
|-
 
|-
|For all &nbsp;<math>x</math>&nbsp; in &nbsp;<math>[1,\infty),</math>
+
|For all &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; in &nbsp;<math style="vertical-align: -5px">[1,\infty),</math>
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>0\le \frac{\sin^2(x)}{x^3} \le \frac{1}{x^3}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>0\le \frac{\sin^2(x)}{x^3} \le \frac{1}{x^3}.</math>
Line 31: Line 31:
 
|Also,  
 
|Also,  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{\sin^2(x)}{x^3}</math>&nbsp; and &nbsp;<math>\frac{1}{x^3}</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -15px">\frac{\sin^2(x)}{x^3}</math>&nbsp; and &nbsp;<math style="vertical-align: -15px">\frac{1}{x^3}</math>
 
|-
 
|-
|are continuous on &nbsp;<math>[1,\infty).</math>
+
|are continuous on &nbsp;<math style="vertical-align: -5px">[1,\infty).</math>
 
|}
 
|}
  
Line 51: Line 51:
 
\end{array}</math>  
 
\end{array}</math>  
 
|-
 
|-
|Since &nbsp;<math>\int_1^\infty \frac{1}{x^3}~dx</math>&nbsp; converges,  
+
|Since &nbsp;<math style="vertical-align: -15px">\int_1^\infty \frac{1}{x^3}~dx</math>&nbsp; converges,  
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_1^\infty \frac{\sin^2(x)}{x^3}~dx</math>  
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_1^\infty \frac{\sin^2(x)}{x^3}~dx</math>  

Revision as of 11:17, 2 March 2017

Does the following integral converge or diverge? Prove your answer!

Foundations:  
Direct Comparison Test for Improper Integrals
        Let    and    be continuous on  
        where    for all    in  
       1.  If    converges, then    converges.
       2.  If    diverges, then    diverges.


Solution:

Step 1:  
We use the Direct Comparison Test for Improper Integrals.
For all    in  
       
Also,
         and  
are continuous on  
Step 2:  
Now, we have
       
Since    converges,
       
converges by the Direct Comparison Test for Improper Integrals.


Final Answer:  
       converges

Return to Sample Exam