Difference between revisions of "009B Sample Final 3, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 6: Line 6:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|'''Direct Comparison Test for Improper Integrals'''
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">g</math>&nbsp; be continuous on &nbsp;<math style="vertical-align: -5px">[a,\infty)</math>
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; where &nbsp;<math style="vertical-align: -5px">0\le f(x)\le g(x)</math>&nbsp; for all &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; in &nbsp;<math style="vertical-align: -5px">[a,\infty).</math>
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;'''1.'''&nbsp; If &nbsp;<math style="vertical-align: -14px">\int_a^\infty g(x)~dx</math>&nbsp; converges, then &nbsp;<math style="vertical-align: -14px">\int_a^\infty f(x)~dx</math>&nbsp; converges.
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;'''2.'''&nbsp; If &nbsp;<math style="vertical-align: -14px">\int_a^\infty f(x)~dx</math>&nbsp; diverges, then &nbsp;<math style="vertical-align: -14px">\int_a^\infty g(x)~dx</math>&nbsp; diverges.
 
|}
 
|}
  

Revision as of 10:21, 1 March 2017

Does the following integral converge or diverge? Prove your answer!

Foundations:  
Direct Comparison Test for Improper Integrals
        Let    and    be continuous on  
        where    for all    in  
       1.  If    converges, then    converges.
       2.  If    diverges, then    diverges.


Solution:

Step 1:  
Step 2:  


Final Answer:  

Return to Sample Exam