Difference between revisions of "009B Sample Final 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam"> Consider the solid obtained by rotating the area bounded by the following three functions about the <math style="vertical-align: -3px">y</math>-axis:
+
<span class="exam"> The region bounded by the parabola &nbsp;<math style="vertical-align: -4px">y=x^2</math>&nbsp; and the line &nbsp;<math style="vertical-align: -4px">y=2x</math>&nbsp; in the first quadrant is revolved about the &nbsp;<math style="vertical-align: -4px">y</math>-axis to generate a solid.
  
::<span class="exam"> <math style="vertical-align: 0px">x=0</math>, <math style="vertical-align: -4px">y=e^x</math>, and <math style="vertical-align: -4px">y=ex</math>.
+
<span class="exam">(a) Sketch the region bounded by the given functions and find their points of intersection.  
 
 
<span class="exam">(a) Sketch the region bounded by the given three functions. Find the intersection point of the two functions:
 
 
 
::<span class="exam"><math style="vertical-align: -4px">y=e^x</math> and <math style="vertical-align: -4px">y=ex</math>. (There is only one.)
 
  
 
<span class="exam">(b) Set up the integral for the volume of the solid.
 
<span class="exam">(b) Set up the integral for the volume of the solid.

Revision as of 13:13, 27 February 2017

The region bounded by the parabola    and the line    in the first quadrant is revolved about the  -axis to generate a solid.

(a) Sketch the region bounded by the given functions and find their points of intersection.

(b) Set up the integral for the volume of the solid.

(c) Find the volume of the solid by computing the integral.

Foundations:  
Recall:
1. You can find the intersection points of two functions, say
by setting and solving for .
2. The volume of a solid obtained by rotating an area around the -axis using cylindrical shells is given by
where is the radius of the shells and is the height of the shells.


Solution:

(a)

Step 1:  
First, we sketch the region bounded by the three functions.
Insert graph here.
Step 2:  
Setting the equations equal, we have .
We get one intersection point, which is .
This intersection point can be seen in the graph shown in Step 1.

(b)

Step 1:  
We proceed using cylindrical shells. The radius of the shells is given by .
The height of the shells is given by .
Step 2:  
So, the volume of the solid is

(c)

Step 1:  
We need to integrate
Step 2:  
For the first integral, we need to use integration by parts.
Let and . Then, and .
So, the integral becomes


Final Answer:  
(a)   (See Step 1 for the graph)
(b)  
(c)  

Return to Sample Exam