Difference between revisions of "009B Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 29: Line 29:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|We first distribute to get
+
|We first note that
 
|-
 
|-
 
|
 
|
::<math>\int e^x(x+\sin(e^x))~dx\,=\,\int e^xx~dx+\int e^x\sin(e^x)~dx.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\int \frac{t^2}{\sqrt{1-t^6}}~dt=\int \frac{t^2}{\sqrt{1-(t^3)^2}}~dt.</math>
 
|-
 
|-
|Now, for the first integral on the right hand side of the last equation, we use integration by parts.  
+
|Now, we proceed by &nbsp;<math>u</math>-substitution.
 
|-
 
|-
|Let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=e^xdx</math>. Then, <math style="vertical-align: 0px">du=dx</math> and <math style="vertical-align: 0px">v=e^x</math>.
+
|Let &nbsp;<math style="vertical-align: 0px">u=t^3.</math> &nbsp; Then, &nbsp; <math style="vertical-align: 0px">du=3t^2dt</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">\frac{du}{3}=t^2dt.</math>
 
|-
 
|-
 
|So, we have
 
|So, we have
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\int \frac{t^2}{\sqrt{1-t^6}}~dt=\int \frac{1}{3\sqrt{1-u^2}}~du.</math>
\displaystyle{\int e^x(x+\sin(e^x))~dx} & = & \displaystyle{\bigg(xe^x-\int e^x~dx \bigg)+\int e^x\sin(e^x)~dx}\\
 
&&\\
 
& = & \displaystyle{xe^x-e^x+\int e^x\sin(e^x)~dx}.\\
 
\end{array}</math>
 
 
|}
 
|}
  

Revision as of 11:54, 27 February 2017

Compute the following integrals.

(a)  

(b)  

(c)  

Foundations:  
1. Through partial fraction decomposition, we can write the fraction
       
       for some constants
2. We have the Pythagorean identity
       


Solution:

(a)

Step 1:  
We first note that

       

Now, we proceed by  -substitution.
Let     Then,     and  
So, we have

       

Step 2:  
Now, for the one remaining integral, we use -substitution.
Let . Then, .
So, we have

(b)

Step 1:  
First, we add and subtract    from the numerator.
So, we have
Step 2:  
Now, we need to use partial fraction decomposition for the second integral.
Since    we let
       
Multiplying both sides of the last equation by  
we get
       
If we let   the last equation becomes  
If we let    then we get    Thus,  
So, in summation, we have
       
Step 3:  
If we plug in the last equation from Step 2 into our final integral in Step 1, we have

       

Step 4:  
For the final remaining integral, we use  -substitution.
Let    Then,    and  
Thus, our final integral becomes

       

Therefore, the final answer is

       

(c)

Step 1:  
First, we write
       
Using the identity    we get
       
If we use this identity, we have
       
Step 2:  
Now, we proceed by  -substitution.
Let    Then,  
So we have

       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam