Difference between revisions of "009B Sample Final 1, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 29: | Line 29: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We first | + | |We first note that |
|- | |- | ||
| | | | ||
− | + | <math>\int \frac{t^2}{\sqrt{1-t^6}}~dt=\int \frac{t^2}{\sqrt{1-(t^3)^2}}~dt.</math> | |
|- | |- | ||
− | |Now | + | |Now, we proceed by <math>u</math>-substitution. |
|- | |- | ||
− | |Let <math style="vertical-align: 0px">u= | + | |Let <math style="vertical-align: 0px">u=t^3.</math> Then, <math style="vertical-align: 0px">du=3t^2dt</math> and <math style="vertical-align: -14px">\frac{du}{3}=t^2dt.</math> |
|- | |- | ||
|So, we have | |So, we have | ||
|- | |- | ||
| | | | ||
− | + | <math>\int \frac{t^2}{\sqrt{1-t^6}}~dt=\int \frac{1}{3\sqrt{1-u^2}}~du.</math> | |
− | \ | ||
− | |||
− | |||
− | |||
|} | |} | ||
Revision as of 11:54, 27 February 2017
Compute the following integrals.
(a)
(b)
(c)
Foundations: |
---|
1. Through partial fraction decomposition, we can write the fraction |
for some constants |
2. We have the Pythagorean identity |
Solution:
(a)
Step 1: |
---|
We first note that |
|
Now, we proceed by -substitution. |
Let Then, and |
So, we have |
|
Step 2: |
---|
Now, for the one remaining integral, we use -substitution. |
Let . Then, . |
So, we have |
|
(b)
Step 1: |
---|
First, we add and subtract from the numerator. |
So, we have |
|
Step 2: |
---|
Now, we need to use partial fraction decomposition for the second integral. |
Since we let |
Multiplying both sides of the last equation by |
we get |
If we let the last equation becomes |
If we let then we get Thus, |
So, in summation, we have |
Step 3: |
---|
If we plug in the last equation from Step 2 into our final integral in Step 1, we have |
|
Step 4: |
---|
For the final remaining integral, we use -substitution. |
Let Then, and |
Thus, our final integral becomes |
|
Therefore, the final answer is |
|
(c)
Step 1: |
---|
First, we write |
Using the identity we get |
If we use this identity, we have |
Step 2: |
---|
Now, we proceed by -substitution. |
Let Then, |
So we have |
|
Final Answer: |
---|
(a) |
(b) |
(c) |