Difference between revisions of "009B Sample Final 1, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
<span class="exam"> Compute the following integrals. | <span class="exam"> Compute the following integrals. | ||
− | <span class="exam">(a) <math>\int | + | <span class="exam">(a) <math>\int \frac{t^2}{\sqrt{1-t^6}}~dt</math> |
− | <span class="exam">(b) <math>\int \frac{2x^2+1}{2x^2+x}~dx</math> | + | <span class="exam">(b) <math>\int \frac{2x^2+1}{2x^2+x}~dx</math> |
− | <span class="exam">(c) <math>\int \sin^3x~dx</math> | + | <span class="exam">(c) <math>\int \sin^3x~dx</math> |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |'''1.''' Through partial fraction decomposition, we can write the fraction |
|- | |- | ||
− | | | + | | <math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math> |
|- | |- | ||
− | | | + | | for some constants <math style="vertical-align: -4px">A,B</math>. |
|- | |- | ||
− | |''' | + | |'''2.''' We have the Pythagorean identity |
+ | |- | ||
+ | | <math style="vertical-align: -5px">\sin^2(x)=1-\cos^2(x)</math>. | ||
|} | |} | ||
Line 70: | Line 72: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |First, we add and subtract <math style="vertical-align: 0px">x</math> from the numerator. | + | |First, we add and subtract <math style="vertical-align: 0px">x</math> from the numerator. |
|- | |- | ||
|So, we have | |So, we have | ||
Line 89: | Line 91: | ||
|Now, we need to use partial fraction decomposition for the second integral. | |Now, we need to use partial fraction decomposition for the second integral. | ||
|- | |- | ||
− | |Since <math style="vertical-align: -5px">2x^2+x=x(2x+1)</math> | + | |Since <math style="vertical-align: -5px">2x^2+x=x(2x+1),</math> we let <math>\frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}.</math> |
|- | |- | ||
− | |Multiplying both sides of the last equation by <math style="vertical-align: -5px">x(2x+1)</math> | + | |Multiplying both sides of the last equation by <math style="vertical-align: -5px">x(2x+1),</math> |
|- | |- | ||
− | |we get <math style="vertical-align: -5px">1-x=A(2x+1)+Bx</math> | + | |we get <math style="vertical-align: -5px">1-x=A(2x+1)+Bx.</math> |
|- | |- | ||
− | |If we let <math style="vertical-align: 0px">x=0</math> | + | |If we let <math style="vertical-align: 0px">x=0,</math> the last equation becomes <math style="vertical-align: -1px">1=A.</math> |
|- | |- | ||
− | |If we let <math style="vertical-align: -14px">x=-\frac{1}{2}</math> | + | |If we let <math style="vertical-align: -14px">x=-\frac{1}{2},</math> then we get <math style="vertical-align: -13px">\frac{3}{2}=-\frac{1}{2}\,B.</math> Thus, <math style="vertical-align: 0px">B=-3.</math> |
|- | |- | ||
− | |So, in summation, we have& | + | |So, in summation, we have <math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}.</math> |
|} | |} | ||
Line 108: | Line 110: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int ~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx}\\ | \displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int ~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx} | + | & = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx.}\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 118: | Line 120: | ||
!Step 4: | !Step 4: | ||
|- | |- | ||
− | |For the final remaining integral, we use <math style="vertical-align: 0px">u</math>-substitution. | + | |For the final remaining integral, we use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
− | |Let <math style="vertical-align: -2px">u=2x+1</math> | + | |Let <math style="vertical-align: -2px">u=2x+1.</math> Then, <math style="vertical-align: 0px">du=2\,dx</math> and <math style="vertical-align: -14px">\frac{du}{2}=dx.</math> |
|- | |- | ||
|Thus, our final integral becomes | |Thus, our final integral becomes | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx}\\ | \displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx}\\ | ||
&&\\ | &&\\ | ||
& = & \displaystyle{x+\ln x+\int\frac{-3}{2u}~du}\\ | & = & \displaystyle{x+\ln x+\int\frac{-3}{2u}~du}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{x+\ln x-\frac{3}{2}\ln u +C} | + | & = & \displaystyle{x+\ln x-\frac{3}{2}\ln u +C.}\\ |
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
Line 136: | Line 138: | ||
|- | |- | ||
| | | | ||
− | + | <math>\int \frac{2x^2+1}{2x^2+x}~dx\,=\,x+\ln x-\frac{3}{2}\ln (2x+1) +C.</math> | |
|} | |} | ||
Line 144: | Line 146: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |First, we write <math style="vertical-align: -13px">\int\sin^3x~dx=\int \sin^2 x \sin x~dx</math>. | + | |First, we write <math style="vertical-align: -13px">\int\sin^3x~dx=\int \sin^2 x \sin x~dx</math>. |
|- | |- | ||
− | |Using the identity <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math> | + | |Using the identity <math style="vertical-align: -2px">\sin^2x+\cos^2x=1,</math> we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x.</math> |
|- | |- | ||
|If we use this identity, we have | |If we use this identity, we have | ||
|- | |- | ||
− | | <math style="vertical-align: -13px">\int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx</math>. | + | | <math style="vertical-align: -13px">\int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx</math>. |
|- | |- | ||
| | | | ||
Line 158: | Line 160: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we proceed by <math>u</math>-substitution. Let <math>u=\cos x</math> | + | |Now, we proceed by <math>u</math>-substitution. |
+ | |- | ||
+ | |Let <math>u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x dx.</math> | ||
|- | |- | ||
|So we have | |So we have | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\int\sin^3x~dx} & = & \displaystyle{\int -(1-u^2)~du}\\ | \displaystyle{\int\sin^3x~dx} & = & \displaystyle{\int -(1-u^2)~du}\\ | ||
&&\\ | &&\\ | ||
Line 178: | Line 182: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' <math>xe^x-e^x-\cos(e^x)+C</math> | + | | '''(a)''' <math>xe^x-e^x-\cos(e^x)+C</math> |
|- | |- | ||
− | |'''(b)''' <math style="vertical-align: -14px">x+\ln x-\frac{3}{2}\ln (2x+1) +C</math> | + | | '''(b)''' <math style="vertical-align: -14px">x+\ln x-\frac{3}{2}\ln (2x+1) +C</math> |
|- | |- | ||
− | |'''(c)''' <math style="vertical-align: -14px">-\cos x+\frac{\cos^3x}{3}+C</math> | + | | '''(c)''' <math style="vertical-align: -14px">-\cos x+\frac{\cos^3x}{3}+C</math> |
|} | |} | ||
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 11:44, 27 February 2017
Compute the following integrals.
(a)
(b)
(c)
Foundations: |
---|
1. Through partial fraction decomposition, we can write the fraction |
for some constants . |
2. We have the Pythagorean identity |
. |
Solution:
(a)
Step 1: |
---|
We first distribute to get |
|
Now, for the first integral on the right hand side of the last equation, we use integration by parts. |
Let and . Then, and . |
So, we have |
|
Step 2: |
---|
Now, for the one remaining integral, we use -substitution. |
Let . Then, . |
So, we have |
|
(b)
Step 1: |
---|
First, we add and subtract from the numerator. |
So, we have |
|
Step 2: |
---|
Now, we need to use partial fraction decomposition for the second integral. |
Since we let |
Multiplying both sides of the last equation by |
we get |
If we let the last equation becomes |
If we let then we get Thus, |
So, in summation, we have |
Step 3: |
---|
If we plug in the last equation from Step 2 into our final integral in Step 1, we have |
|
Step 4: |
---|
For the final remaining integral, we use -substitution. |
Let Then, and |
Thus, our final integral becomes |
|
Therefore, the final answer is |
|
(c)
Step 1: |
---|
First, we write . |
Using the identity we get |
If we use this identity, we have |
. |
Step 2: |
---|
Now, we proceed by -substitution. |
Let Then, |
So we have |
|
Final Answer: |
---|
(a) |
(b) |
(c) |