Difference between revisions of "009B Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam"> Compute the following integrals.
 
<span class="exam"> Compute the following integrals.
  
<span class="exam">(a) <math>\int e^x(x+\sin(e^x))~dx</math>
+
<span class="exam">(a) &nbsp;<math>\int \frac{t^2}{\sqrt{1-t^6}}~dt</math>
  
<span class="exam">(b) <math>\int \frac{2x^2+1}{2x^2+x}~dx</math>
+
<span class="exam">(b) &nbsp;<math>\int \frac{2x^2+1}{2x^2+x}~dx</math>
  
<span class="exam">(c) <math>\int \sin^3x~dx</math>
+
<span class="exam">(c) &nbsp;<math>\int \sin^3x~dx</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|Recall:
+
|'''1.''' Through partial fraction decomposition, we can write the fraction
 
|-
 
|-
|'''1.''' Integration by parts tells us that <math style="vertical-align: -12px">\int u~dv=uv-\int v~du</math>.
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math>
 
|-
 
|-
|'''2.''' Through partial fraction decomposition, we can write the fraction &nbsp;<math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math> &nbsp;for some constants <math style="vertical-align: -4px">A,B</math>.
+
|&nbsp; &nbsp; &nbsp; &nbsp;for some constants <math style="vertical-align: -4px">A,B</math>.
 
|-
 
|-
|'''3.''' We have the Pythagorean identity <math style="vertical-align: -5px">\sin^2(x)=1-\cos^2(x)</math>.
+
|'''2.''' We have the Pythagorean identity  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">\sin^2(x)=1-\cos^2(x)</math>.
 
|}
 
|}
  
Line 70: Line 72:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we add and subtract <math style="vertical-align: 0px">x</math> from the numerator.  
+
|First, we add and subtract &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; from the numerator.  
 
|-
 
|-
 
|So, we have
 
|So, we have
Line 89: Line 91:
 
|Now, we need to use partial fraction decomposition for the second integral.
 
|Now, we need to use partial fraction decomposition for the second integral.
 
|-
 
|-
|Since <math style="vertical-align: -5px">2x^2+x=x(2x+1)</math>, we let <math>\frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}</math>.
+
|Since &nbsp;<math style="vertical-align: -5px">2x^2+x=x(2x+1),</math>&nbsp; we let &nbsp;<math>\frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}.</math>
 
|-
 
|-
|Multiplying both sides of the last equation by <math style="vertical-align: -5px">x(2x+1)</math>,
+
|Multiplying both sides of the last equation by &nbsp;<math style="vertical-align: -5px">x(2x+1),</math>
 
|-
 
|-
|we get <math style="vertical-align: -5px">1-x=A(2x+1)+Bx</math>.
+
|we get &nbsp;<math style="vertical-align: -5px">1-x=A(2x+1)+Bx.</math>
 
|-
 
|-
|If we let <math style="vertical-align: 0px">x=0</math>, the last equation becomes <math style="vertical-align: -1px">1=A</math>.
+
|If we let &nbsp;<math style="vertical-align: 0px">x=0,</math> the last equation becomes &nbsp;<math style="vertical-align: -1px">1=A.</math>
 
|-
 
|-
|If we let <math style="vertical-align: -14px">x=-\frac{1}{2}</math>, then we get &thinsp;<math style="vertical-align: -13px">\frac{3}{2}=-\frac{1}{2}\,B</math>. Thus, <math style="vertical-align: 0px">B=-3</math>.
+
|If we let &nbsp;<math style="vertical-align: -14px">x=-\frac{1}{2},</math>&nbsp; then we get &nbsp;<math style="vertical-align: -13px">\frac{3}{2}=-\frac{1}{2}\,B.</math>&nbsp; Thus, &nbsp;<math style="vertical-align: 0px">B=-3.</math>
 
|-
 
|-
|So, in summation, we have&thinsp; <math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}</math>.
+
|So, in summation, we have &nbsp;<math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}.</math>
 
|}
 
|}
  
Line 108: Line 110:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int ~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx}\\
 
\displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int ~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx}.\\
+
& = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 118: Line 120:
 
!Step 4: &nbsp;
 
!Step 4: &nbsp;
 
|-
 
|-
|For the final remaining integral, we use <math style="vertical-align: 0px">u</math>-substitution.  
+
|For the final remaining integral, we use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|Let <math style="vertical-align: -2px">u=2x+1</math>. Then, <math style="vertical-align: 0px">du=2\,dx</math> and&thinsp; <math style="vertical-align: -14px">\frac{du}{2}=dx</math>.
+
|Let &nbsp;<math style="vertical-align: -2px">u=2x+1.</math>&nbsp; Then, &nbsp;<math style="vertical-align: 0px">du=2\,dx</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">\frac{du}{2}=dx.</math>
 
|-
 
|-
 
|Thus, our final integral becomes
 
|Thus, our final integral becomes
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx}\\
 
\displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{x+\ln x+\int\frac{-3}{2u}~du}\\
 
& = & \displaystyle{x+\ln x+\int\frac{-3}{2u}~du}\\
 
&&\\
 
&&\\
& = & \displaystyle{x+\ln x-\frac{3}{2}\ln u +C}.\\
+
& = & \displaystyle{x+\ln x-\frac{3}{2}\ln u +C.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
Line 136: Line 138:
 
|-
 
|-
 
|
 
|
::<math>\int \frac{2x^2+1}{2x^2+x}~dx\,=\,x+\ln x-\frac{3}{2}\ln (2x+1) +C.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\int \frac{2x^2+1}{2x^2+x}~dx\,=\,x+\ln x-\frac{3}{2}\ln (2x+1) +C.</math>
 
|}
 
|}
  
Line 144: Line 146:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we write <math style="vertical-align: -13px">\int\sin^3x~dx=\int \sin^2 x \sin x~dx</math>.
+
|First, we write &nbsp;<math style="vertical-align: -13px">\int\sin^3x~dx=\int \sin^2 x \sin x~dx</math>.
 
|-
 
|-
|Using the identity <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>, we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x</math>.
+
|Using the identity &nbsp;<math style="vertical-align: -2px">\sin^2x+\cos^2x=1,</math>&nbsp; we get &nbsp;<math style="vertical-align: -1px">\sin^2x=1-\cos^2x.</math>  
 
|-
 
|-
 
|If we use this identity, we have
 
|If we use this identity, we have
 
|-
 
|-
| &nbsp; &nbsp; <math style="vertical-align: -13px">\int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx</math>.
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">\int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx</math>.
 
|-
 
|-
 
|
 
|
Line 158: Line 160:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we proceed by <math>u</math>-substitution. Let <math>u=\cos x</math>. Then, <math style="vertical-align: -1px">du=-\sin x dx</math>.
+
|Now, we proceed by &nbsp;<math>u</math>-substitution.  
 +
|-
 +
|Let &nbsp;<math>u=\cos x.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -1px">du=-\sin x dx.</math>  
 
|-
 
|-
 
|So we have
 
|So we have
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\int\sin^3x~dx} & = & \displaystyle{\int -(1-u^2)~du}\\
 
\displaystyle{\int\sin^3x~dx} & = & \displaystyle{\int -(1-u^2)~du}\\
 
&&\\
 
&&\\
Line 178: Line 182:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' &nbsp;<math>xe^x-e^x-\cos(e^x)+C</math>
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp;<math>xe^x-e^x-\cos(e^x)+C</math>
 
|-
 
|-
|'''(b)''' &nbsp;<math style="vertical-align: -14px">x+\ln x-\frac{3}{2}\ln (2x+1) +C</math>
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp;<math style="vertical-align: -14px">x+\ln x-\frac{3}{2}\ln (2x+1) +C</math>
 
|-
 
|-
|'''(c)''' &nbsp;<math style="vertical-align: -14px">-\cos x+\frac{\cos^3x}{3}+C</math>
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp;<math style="vertical-align: -14px">-\cos x+\frac{\cos^3x}{3}+C</math>
 
|}
 
|}
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:44, 27 February 2017

Compute the following integrals.

(a)  

(b)  

(c)  

Foundations:  
1. Through partial fraction decomposition, we can write the fraction
       
       for some constants .
2. We have the Pythagorean identity
       .


Solution:

(a)

Step 1:  
We first distribute to get
Now, for the first integral on the right hand side of the last equation, we use integration by parts.
Let and . Then, and .
So, we have
Step 2:  
Now, for the one remaining integral, we use -substitution.
Let . Then, .
So, we have

(b)

Step 1:  
First, we add and subtract    from the numerator.
So, we have
Step 2:  
Now, we need to use partial fraction decomposition for the second integral.
Since    we let  
Multiplying both sides of the last equation by  
we get  
If we let   the last equation becomes  
If we let    then we get    Thus,  
So, in summation, we have  
Step 3:  
If we plug in the last equation from Step 2 into our final integral in Step 1, we have

       

Step 4:  
For the final remaining integral, we use  -substitution.
Let    Then,    and  
Thus, our final integral becomes

       

Therefore, the final answer is

       

(c)

Step 1:  
First, we write  .
Using the identity    we get  
If we use this identity, we have
       .
Step 2:  
Now, we proceed by  -substitution.
Let    Then,  
So we have

       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam