Difference between revisions of "009A Sample Final 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 12: | Line 12: | ||
|'''L'Hôpital's Rule''' | |'''L'Hôpital's Rule''' | ||
|- | |- | ||
− | | Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>& | + | | Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math> and <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math> are both zero or both <math style="vertical-align: -1px">\pm \infty .</math> |
|- | |- | ||
| | | | ||
− | If <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>& | + | If <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> is finite or <math style="vertical-align: -4px">\pm \infty ,</math> |
|- | |- | ||
| | | | ||
− | then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math> | + | then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math> |
|} | |} | ||
Line 34: | Line 34: | ||
<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}.</math> | <math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}.</math> | ||
|- | |- | ||
− | |So, we can cancel <math style="vertical-align: -2px">x+3</math>& | + | |So, we can cancel <math style="vertical-align: -2px">x+3</math> in the numerator and denominator. Thus, we have |
|- | |- | ||
| | | | ||
Line 43: | Line 43: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we can just plug in <math style="vertical-align: -1px">x=-3</math>& | + | |Now, we can just plug in <math style="vertical-align: -1px">x=-3</math> to get |
|- | |- | ||
| | | | ||
Line 80: | Line 80: | ||
<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{x^2(4+\frac{1}{x}+\frac{5}{x^2}})}.</math> | <math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{x^2(4+\frac{1}{x}+\frac{5}{x^2}})}.</math> | ||
|- | |- | ||
− | |Since we are looking at the limit as <math style="vertical-align: 0px">x</math> goes to negative infinity, we have <math style="vertical-align: -2px">\sqrt{x^2}=-x.</math> | + | |Since we are looking at the limit as <math style="vertical-align: 0px">x</math> goes to negative infinity, we have <math style="vertical-align: -2px">\sqrt{x^2}=-x.</math> |
|- | |- | ||
|So, we have | |So, we have |
Revision as of 09:09, 27 February 2017
In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
(a)
(b)
(c)
Foundations: |
---|
L'Hôpital's Rule |
Suppose that and are both zero or both |
If is finite or |
then |
Solution:
(a)
Step 1: |
---|
We begin by factoring the numerator. We have |
|
So, we can cancel in the numerator and denominator. Thus, we have |
|
Step 2: |
---|
Now, we can just plug in to get |
|
(b)
Step 1: |
---|
We proceed using L'Hôpital's Rule. So, we have |
|
Step 2: |
---|
This limit is |
(c)
Step 1: |
---|
We have |
|
Since we are looking at the limit as goes to negative infinity, we have |
So, we have |
|
Step 2: |
---|
We simplify to get |
|
So, we have |
|
Final Answer: |
---|
(a) |
(b) |
(c) |