Difference between revisions of "009C Sample Midterm 2, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 10: | Line 10: | ||
|'''1.''' '''Direct Comparison Test''' | |'''1.''' '''Direct Comparison Test''' | ||
|- | |- | ||
| − | | Let <math>\{a_n\}</math> and <math>\{b_n\}</math> be positive sequences where <math style="vertical-align: -3px">a_n\le b_n</math> | + | | Let <math>\{a_n\}</math> and <math>\{b_n\}</math> be positive sequences where <math style="vertical-align: -3px">a_n\le b_n</math> |
|- | |- | ||
| − | | for all <math style="vertical-align: -3px">n\ge N</math> for some <math style="vertical-align: -3px">N\ge 1.</math> | + | | for all <math style="vertical-align: -3px">n\ge N</math> for some <math style="vertical-align: -3px">N\ge 1.</math> |
|- | |- | ||
| − | |'''2.''' If <math>\sum_{n=1}^\infty b_n</math> converges, then <math>\sum_{n=1}^\infty a_n</math> converges. | + | |'''2.''' If <math>\sum_{n=1}^\infty b_n</math> converges, then <math>\sum_{n=1}^\infty a_n</math> converges. |
|- | |- | ||
| − | |'''3.''' If <math>\sum_{n=1}^\infty a_n</math> diverges, then <math>\sum_{n=1}^\infty b_n</math> diverges. | + | |'''3.''' If <math>\sum_{n=1}^\infty a_n</math> diverges, then <math>\sum_{n=1}^\infty b_n</math> diverges. |
|} | |} | ||
| Line 29: | Line 29: | ||
| <math>\frac{3^n}{n}>0</math> | | <math>\frac{3^n}{n}>0</math> | ||
|- | |- | ||
| − | |for all <math style="vertical-align: -3px">n\ge 1.</math> | + | |for all <math style="vertical-align: -3px">n\ge 1.</math> |
|- | |- | ||
|This means that we can use a comparison test on this series. | |This means that we can use a comparison test on this series. | ||
|- | |- | ||
| − | |Let <math style="vertical-align: -13px">a_n=\frac{3^n}{n}.</math> | + | |Let <math style="vertical-align: -13px">a_n=\frac{3^n}{n}.</math> |
|} | |} | ||
| Line 39: | Line 39: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |Let <math style="vertical-align: -14px">b_n=\frac{1}{n}.</math> | + | |Let <math style="vertical-align: -14px">b_n=\frac{1}{n}.</math> |
|- | |- | ||
|We want to compare the series in this problem with | |We want to compare the series in this problem with | ||
| Line 45: | Line 45: | ||
| <math>\sum_{n=1}^\infty \frac{1}{n}.</math> | | <math>\sum_{n=1}^\infty \frac{1}{n}.</math> | ||
|- | |- | ||
| − | |This is the harmonic series (or <math style="vertical-align: -4px">p</math>-series with <math style="vertical-align: -4px">p=1.</math>) | + | |This is the harmonic series (or <math style="vertical-align: -4px">p</math>-series with <math style="vertical-align: -4px">p=1.</math> ) |
|- | |- | ||
| − | |Hence, <math>\sum_{n=1}^\infty b_n</math> diverges. | + | |Hence, <math>\sum_{n=1}^\infty b_n</math> diverges. |
|} | |} | ||
| Line 53: | Line 53: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
| − | |Also, we have <math style="vertical-align: -4px">b_n<a_n</math> since | + | |Also, we have <math style="vertical-align: -4px">b_n<a_n</math> since |
|- | |- | ||
| <math>\frac{1}{n}<\frac{3^n}{n}</math> | | <math>\frac{1}{n}<\frac{3^n}{n}</math> | ||
|- | |- | ||
| − | | for all <math style="vertical-align: -3px">n\ge 1.</math> | + | | for all <math style="vertical-align: -3px">n\ge 1.</math> |
|- | |- | ||
| − | |Therefore, the series <math>\sum_{n=1}^\infty a_n</math> diverges | + | |Therefore, the series <math>\sum_{n=1}^\infty a_n</math> diverges |
|- | |- | ||
|by the Direct Comparison Test. | |by the Direct Comparison Test. | ||
Revision as of 19:05, 26 February 2017
Determine convergence or divergence:
| Foundations: |
|---|
| 1. Direct Comparison Test |
| Let and be positive sequences where |
| for all for some |
| 2. If converges, then converges. |
| 3. If diverges, then diverges. |
Solution:
| Step 1: |
|---|
| First, we note that |
| for all |
| This means that we can use a comparison test on this series. |
| Let |
| Step 2: |
|---|
| Let |
| We want to compare the series in this problem with |
| This is the harmonic series (or -series with ) |
| Hence, diverges. |
| Step 3: |
|---|
| Also, we have since |
| for all |
| Therefore, the series diverges |
| by the Direct Comparison Test. |
| Final Answer: |
|---|
| diverges |