Difference between revisions of "009C Sample Midterm 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' A series <math>\sum a_n</math> is '''absolutely convergent''' if
+
|'''1.''' A series &nbsp;<math>\sum a_n</math>&nbsp; is '''absolutely convergent''' if
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; the series <math>\sum |a_n|</math> converges.
+
|&nbsp; &nbsp; &nbsp; &nbsp; the series &nbsp;<math>\sum |a_n|</math>&nbsp; converges.
 
|-
 
|-
|'''2.''' A series <math>\sum a_n</math> is '''conditionally convergent''' if  
+
|'''2.''' A series &nbsp;<math>\sum a_n</math>&nbsp; is '''conditionally convergent''' if  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; the series <math>\sum |a_n|</math> diverges and the series <math>\sum a_n</math> converges.  
+
|&nbsp; &nbsp; &nbsp; &nbsp; the series &nbsp;<math>\sum |a_n|</math>&nbsp; diverges and the series &nbsp;<math>\sum a_n</math>&nbsp; converges.  
 
|}
 
|}
  
Line 28: Line 28:
 
|First, we take the absolute value of the terms in the original series.  
 
|First, we take the absolute value of the terms in the original series.  
 
|-
 
|-
|Let <math style="vertical-align: -14px">a_n=\frac{(-1)^n}{n}.</math>
+
|Let &nbsp;<math style="vertical-align: -14px">a_n=\frac{(-1)^n}{n}.</math>
 
|-
 
|-
 
|Therefore,
 
|Therefore,
Line 42: Line 42:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|This series is the harmonic series (or <math style="vertical-align: -5px">p</math>-series with <math style="vertical-align: -5px">p=1</math>).
+
|This series is the harmonic series (or &nbsp;<math style="vertical-align: -5px">p</math>-series with &nbsp;<math style="vertical-align: -5px">p=1</math>&nbsp;).
 
|-
 
|-
 
|Thus, it diverges. Hence, the series  
 
|Thus, it diverges. Hence, the series  
Line 64: Line 64:
 
|we notice that this series is alternating.  
 
|we notice that this series is alternating.  
 
|-
 
|-
|Let <math style="vertical-align: -14px"> b_n=\frac{1}{n}.</math>
+
|Let &nbsp;<math style="vertical-align: -14px"> b_n=\frac{1}{n}.</math>
 
|-
 
|-
|The sequence <math style="vertical-align: -4px">\{b_n\}</math> is decreasing since
+
|The sequence &nbsp;<math style="vertical-align: -4px">\{b_n\}</math>&nbsp; is decreasing since
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n+1}<\frac{1}{n}</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n+1}<\frac{1}{n}</math>
 
|-
 
|-
|for all <math style="vertical-align: -3px">n\ge 1.</math>
+
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|-
 
|Also,  
 
|Also,  
Line 76: Line 76:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{n}=0.</math>  
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{n}=0.</math>  
 
|-
 
|-
|Therefore, the series <math>\sum_{n=1}^\infty \frac{(-1)^n}{n}</math> &nbsp; converges  
+
|Therefore, the series &nbsp;<math>\sum_{n=1}^\infty \frac{(-1)^n}{n}</math> &nbsp; converges  
 
|-
 
|-
 
|by the Alternating Series Test.
 
|by the Alternating Series Test.
Line 84: Line 84:
 
!Step 4: &nbsp;
 
!Step 4: &nbsp;
 
|-
 
|-
|Since the series <math>\sum_{n=1}^\infty \frac{(-1)^n}{n}</math> &nbsp; is not absolutely convergent but convergent,  
+
|Since the series &nbsp;<math>\sum_{n=1}^\infty \frac{(-1)^n}{n}</math> &nbsp; is not absolutely convergent but convergent,  
 
|-
 
|-
 
|this series is conditionally convergent.
 
|this series is conditionally convergent.

Revision as of 18:53, 26 February 2017

Determine whether the following series converges absolutely,

conditionally or whether it diverges.

Be sure to justify your answers!


Foundations:  
1. A series    is absolutely convergent if
        the series    converges.
2. A series    is conditionally convergent if
        the series    diverges and the series    converges.


Solution:

Step 1:  
First, we take the absolute value of the terms in the original series.
Let  
Therefore,
       
Step 2:  
This series is the harmonic series (or  -series with   ).
Thus, it diverges. Hence, the series
       
is not absolutely convergent.
Step 3:  
Now, we need to look back at the original series to see
if it conditionally converges.
For
       
we notice that this series is alternating.
Let  
The sequence    is decreasing since
       
for all  
Also,
       
Therefore, the series     converges
by the Alternating Series Test.
Step 4:  
Since the series     is not absolutely convergent but convergent,
this series is conditionally convergent.


Final Answer:  
        Conditionally convergent

Return to Sample Exam