Difference between revisions of "009C Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>&thinsp; and <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>&thinsp; are both zero or both <math style="vertical-align: -1px">\pm \infty .</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; Suppose that &nbsp;<math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>&nbsp; are both zero or both &nbsp;<math style="vertical-align: -1px">\pm \infty .</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>&thinsp; is finite or&thinsp; <math style="vertical-align: -4px">\pm \infty ,</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>&nbsp; is finite or &nbsp;<math style="vertical-align: -4px">\pm \infty ,</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; then &nbsp;<math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
|}
 
|}
  
Line 37: Line 37:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} n=\infty.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} n=\infty.</math>
 
|-
 
|-
|Therefore, the limit has the form <math style="vertical-align: -11px">\frac{\infty}{\infty},</math>
+
|Therefore, the limit has the form &nbsp;<math style="vertical-align: -11px">\frac{\infty}{\infty},</math>
 
|-
 
|-
 
|which means that we can use L'Hopital's Rule to calculate this limit.
 
|which means that we can use L'Hopital's Rule to calculate this limit.
Line 45: Line 45:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|First, switch to the variable <math style="vertical-align: 0px">x</math> so that we have functions and  
+
|First, switch to the variable &nbsp;<math style="vertical-align: 0px">x</math> &nbsp; so that we have functions and  
 
|-
 
|-
 
|can take derivatives. Thus, using L'Hopital's Rule, we have  
 
|can take derivatives. Thus, using L'Hopital's Rule, we have  

Revision as of 18:48, 26 February 2017

Does the following sequence converge or diverge?

If the sequence converges, also find the limit of the sequence.

Be sure to jusify your answers!


Foundations:  
L'Hôpital's Rule

        Suppose that    and    are both zero or both  

        If    is finite or  

        then  


Solution:

Step 1:  
First, notice that
       
and
       
Therefore, the limit has the form  
which means that we can use L'Hopital's Rule to calculate this limit.
Step 2:  
First, switch to the variable     so that we have functions and
can take derivatives. Thus, using L'Hopital's Rule, we have
       


Final Answer:  
       

Return to Sample Exam