Difference between revisions of "009B Sample Midterm 3, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
::<math>r'(t)=2t^2e^{-t}</math>
 
::<math>r'(t)=2t^2e^{-t}</math>
  
<span class="exam">where <math>t</math> is the number of hours since the drug was administered.  
+
<span class="exam">where &nbsp;<math>t</math>&nbsp; is the number of hours since the drug was administered.  
  
<span class="exam">Find the total reaction to the drug from <math style="vertical-align: -1px">t=1</math> to <math style="vertical-align: 0px">t=6.</math>
+
<span class="exam">Find the total reaction to the drug from &nbsp;<math style="vertical-align: -1px">t=1</math>&nbsp; to &nbsp;<math style="vertical-align: 0px">t=6.</math>
  
  
Line 11: Line 11:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|If we calculate <math style="vertical-align: -14px">\int_a^b r'(t)~dt,</math> what are we calculating?
+
|If we calculate &nbsp;<math style="vertical-align: -14px">\int_a^b r'(t)~dt,</math>&nbsp; what are we calculating?
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; We are calculating <math style="vertical-align: -5px">r(b)-r(a).</math> This is the total reaction to the   
+
&nbsp; &nbsp; &nbsp; &nbsp; We are calculating &nbsp;<math style="vertical-align: -5px">r(b)-r(a).</math>&nbsp; This is the total reaction to the   
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; drug from <math style="vertical-align: 0px">t=a</math> to <math style="vertical-align: 0px">t=b.</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; drug from &nbsp;<math style="vertical-align: 0px">t=a</math>&nbsp; to &nbsp;<math style="vertical-align: 0px">t=b.</math>  
 
|}
 
|}
  
Line 25: Line 25:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|To calculate the total reaction to the drug from <math style="vertical-align: -1px">t=1</math> to <math style="vertical-align: -4px">t=6,</math>  
+
|To calculate the total reaction to the drug from &nbsp;<math style="vertical-align: -1px">t=1</math>&nbsp; to &nbsp;<math style="vertical-align: -4px">t=6,</math>  
 
|-
 
|-
 
|we need to calculate
 
|we need to calculate
Line 38: Line 38:
 
|We proceed using integration by parts.  
 
|We proceed using integration by parts.  
 
|-
 
|-
|Let <math style="vertical-align: 0px">u=2t^2</math> and <math style="vertical-align: 0px">dv=e^{-t}dt.</math>  
+
|Let &nbsp;<math style="vertical-align: 0px">u=2t^2</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^{-t}dt.</math>  
 
|-
 
|-
|Then, <math style="vertical-align: -1px">du=4t~dt</math> and <math style="vertical-align: 0px">v=-e^{-t}.</math>
+
|Then, &nbsp;<math style="vertical-align: -1px">du=4t~dt</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">v=-e^{-t}.</math>
 
|-
 
|-
 
|Then, we have
 
|Then, we have
Line 52: Line 52:
 
|Now, we need to use integration by parts again.  
 
|Now, we need to use integration by parts again.  
 
|-
 
|-
|Let <math style="vertical-align: 0px">u=4t</math> and <math style="vertical-align: 0px">dv=e^{-t}dt.</math>  
+
|Let &nbsp;<math style="vertical-align: 0px">u=4t</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^{-t}dt.</math>  
 
|-
 
|-
|Then, <math style="vertical-align: -1px">du=4dt</math> and <math style="vertical-align: 0px">v=-e^{-t}.</math>
+
|Then, &nbsp;<math style="vertical-align: -1px">du=4dt</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">v=-e^{-t}.</math>
 
|-
 
|-
 
|Thus, we get
 
|Thus, we get

Revision as of 18:40, 26 February 2017

The rate of reaction to a drug is given by:

where    is the number of hours since the drug was administered.

Find the total reaction to the drug from    to  


Foundations:  
If we calculate    what are we calculating?

        We are calculating    This is the total reaction to the

        drug from    to  


Solution:

Step 1:  
To calculate the total reaction to the drug from    to  
we need to calculate

       

Step 2:  
We proceed using integration by parts.
Let    and  
Then,    and  
Then, we have
      
Step 3:  
Now, we need to use integration by parts again.
Let    and  
Then,    and  
Thus, we get

       


Final Answer:  
      

Return to Sample Exam