Difference between revisions of "009B Sample Midterm 2, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 8: | Line 8: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | |'''1.''' Recall the trig identity | + | |'''1.''' Recall the trig identity <math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math> |
|- | |- | ||
| − | | | + | |'''2.''' Also, <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math> |
|- | |- | ||
| − | + | |'''3.''' How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math> | |
| − | |||
| − | |||
| − | |||
| − | |'''3.''' How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math> | ||
|- | |- | ||
| | | | ||
| − | You could use <math style="vertical-align: 0px">u</math>-substitution. | + | You could use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
| − | | Let <math style="vertical-align: -2px">u=\tan x.</math> | + | | Let <math style="vertical-align: -2px">u=\tan x.</math> |
|- | |- | ||
| − | | Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math> | + | | Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math> |
|- | |- | ||
| | | | ||
| − | Thus, <math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C.</math> | + | Thus, <math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C.</math> |
|} | |} | ||
| Line 38: | Line 34: | ||
| <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx.</math> | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx.</math> | ||
|- | |- | ||
| − | |Using the trig identity <math style="vertical-align: -5px">\sec^2(x)=\tan^2(x)+1,</math> | + | |Using the trig identity <math style="vertical-align: -5px">\sec^2(x)=\tan^2(x)+1,</math> |
|- | |- | ||
|we have | |we have | ||
| Line 44: | Line 40: | ||
| <math style="vertical-align: -5px">\tan^2(x)=\sec^2(x)-1.</math> | | <math style="vertical-align: -5px">\tan^2(x)=\sec^2(x)-1.</math> | ||
|- | |- | ||
| − | |Plugging in the last identity into one of the <math style="vertical-align: -5px">\tan^2(x),</math> we get | + | |Plugging in the last identity into one of the <math style="vertical-align: -5px">\tan^2(x),</math> we get |
|- | |- | ||
| | | | ||
| Line 65: | Line 61: | ||
| <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx.</math> | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx.</math> | ||
|- | |- | ||
| − | |For the first integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. | + | |For the first integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
| − | |Let <math style="vertical-align: -5px">u=\tan(x).</math> | + | |Let <math style="vertical-align: -5px">u=\tan(x).</math> |
|- | |- | ||
| − | |Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math> | + | |Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math> |
|- | |- | ||
|So, we have | |So, we have | ||
Revision as of 18:30, 26 February 2017
Evaluate the integral:
| Foundations: |
|---|
| 1. Recall the trig identity |
| 2. Also, |
| 3. How would you integrate |
|
You could use -substitution. |
| Let |
| Then, |
|
Thus, |
Solution:
| Step 1: |
|---|
| First, we write |
| Using the trig identity |
| we have |
| Plugging in the last identity into one of the we get |
|
|
| by using the identity again on the last equality. |
| Step 2: |
|---|
| So, we have |
| For the first integral, we need to use -substitution. |
| Let |
| Then, |
| So, we have |
| Step 3: |
|---|
| We integrate to get |
|
|
| Final Answer: |
|---|