Difference between revisions of "009B Sample Midterm 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">\int u~dv=uv-\int v~du.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">\int u~dv=uv-\int v~du.</math>
 
|-
 
|-
|'''2.''' How would you integrate <math style="vertical-align: -15px">\int e^x\sin x~dx?</math>
+
|'''2.''' How would you integrate &nbsp;<math style="vertical-align: -15px">\int e^x\sin x~dx?</math>
 
|-
 
|-
 
|
 
|
Line 17: Line 17:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -5px">u=\sin(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -5px">u=\sin(x)</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^x~dx.</math>  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math style="vertical-align: -5px">du=\cos(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; Then, &nbsp;<math style="vertical-align: -5px">du=\cos(x)~dx</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">v=e^x.</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; Thus, <math style="vertical-align: -15px">\int e^x\sin x~dx=e^x\sin(x)-\int e^x\cos(x)~dx.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; Thus, &nbsp;<math style="vertical-align: -15px">\int e^x\sin x~dx=e^x\sin(x)-\int e^x\cos(x)~dx.</math>
 
|-
 
|-
 
|
 
|
Line 28: Line 28:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -5px">u=\cos(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -5px">u=\cos(x)</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^x~dx.</math>  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math style="vertical-align: -5px">du=-\sin(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; Then, &nbsp;<math style="vertical-align: -5px">du=-\sin(x)~dx</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">v=e^x.</math>
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Therefore,
 
|&nbsp; &nbsp; &nbsp; &nbsp; Therefore,
Line 50: Line 50:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; Hence, <math style="vertical-align: -15px">\int e^x\sin (x)~dx=\frac{e^x}{2}(\sin(x)-\cos(x))+C.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; Hence, &nbsp;<math style="vertical-align: -15px">\int e^x\sin (x)~dx=\frac{e^x}{2}(\sin(x)-\cos(x))+C.</math>
 
|}
 
|}
  
Line 60: Line 60:
 
|We proceed using integration by parts.  
 
|We proceed using integration by parts.  
 
|-
 
|-
|Let <math style="vertical-align: -5px">u=\sin(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx.</math>  
+
|Let &nbsp;<math style="vertical-align: -5px">u=\sin(2x)</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^{-2x}dx.</math>  
 
|-
 
|-
|Then, <math style="vertical-align: -5px">du=2\cos(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math>
+
|Then, &nbsp;<math style="vertical-align: -5px">du=2\cos(2x)dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math>
 
|-
 
|-
 
|Thus, we get  
 
|Thus, we get  
Line 79: Line 79:
 
|Now, we need to use integration by parts again.  
 
|Now, we need to use integration by parts again.  
 
|-
 
|-
|Let <math style="vertical-align: -5px">u=\cos(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx.</math>  
+
|Let &nbsp;<math style="vertical-align: -5px">u=\cos(2x)</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^{-2x}dx.</math>  
 
|-
 
|-
|Then, <math style="vertical-align: -5px">du=-2\sin(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math>
+
|Then, &nbsp;<math style="vertical-align: -5px">du=-2\sin(2x)dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math>
 
|-
 
|-
 
|Therefore, we get  
 
|Therefore, we get  

Revision as of 18:28, 26 February 2017

Evaluate the integral:


Foundations:  
1. Integration by parts tells us
       
2. How would you integrate  

        You could use integration by parts.

        Let    and  

        Then,    and  

        Thus,  

        Now, we need to use integration by parts a second time.

        Let    and  

        Then,    and  
        Therefore,

       

        Notice, we are back where we started.

        Therefore, adding the last term on the right hand side to the opposite side, we get

       

        Hence,  


Solution:

Step 1:  
We proceed using integration by parts.
Let    and  
Then,    and  
Thus, we get

       

Step 2:  
Now, we need to use integration by parts again.
Let    and  
Then,    and  
Therefore, we get

       

Step 3:  
Notice that the integral on the right of the last equation in Step 2
is the same integral that we had at the beginning of the problem.
Thus, if we add the integral on the right to the other side of the equation, we get
       
Now, we divide both sides by 2 to get
       
Thus, the final answer is
       


Final Answer:  
      

Return to Sample Exam