Difference between revisions of "009B Sample Midterm 2, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 9: | Line 9: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | |How would you integrate <math style="vertical-align: -12px">\int (2x+1)\sqrt{x^2+x}~dx?</math> | + | |How would you integrate <math style="vertical-align: -12px">\int (2x+1)\sqrt{x^2+x}~dx?</math> |
|- | |- | ||
| | | | ||
| − | You could use <math style="vertical-align: 0px">u</math>-substitution. | + | You could use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
| − | | Let <math style="vertical-align: -2px">u=x^2+x.</math> | + | | Let <math style="vertical-align: -2px">u=x^2+x.</math> |
|- | |- | ||
| − | | Then, <math style="vertical-align: -4px">du=(2x+1)~dx.</math> | + | | Then, <math style="vertical-align: -4px">du=(2x+1)~dx.</math> |
|- | |- | ||
| | | | ||
| Line 71: | Line 71: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |We use <math style="vertical-align: 0px">u</math>-substitution. | + | |We use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
| − | |Let <math style="vertical-align: -2px">u=x^4+2x^2+4.</math> | + | |Let <math style="vertical-align: -2px">u=x^4+2x^2+4.</math> |
|- | |- | ||
| − | |Then, <math style="vertical-align: -5px">du=(4x^3+4x)dx</math> and <math style="vertical-align: -14px">\frac{du}{4}=(x^3+x)dx.</math> | + | |Then, <math style="vertical-align: -5px">du=(4x^3+4x)dx</math> and <math style="vertical-align: -14px">\frac{du}{4}=(x^3+x)dx.</math> |
|- | |- | ||
|Also, we need to change the bounds of integration. | |Also, we need to change the bounds of integration. | ||
|- | |- | ||
| − | |Plugging in our values into the equation <math style="vertical-align: -4px">u=x^4+2x^2+4,</math> | + | |Plugging in our values into the equation <math style="vertical-align: -4px">u=x^4+2x^2+4,</math> |
|- | |- | ||
| − | |we get <math style="vertical-align: -5px">u_1=0^4+2(0)^2+4=4</math> and <math style="vertical-align: -5px">u_2=2^4+2(2)^2+4=28.</math> | + | |we get <math style="vertical-align: -5px">u_1=0^4+2(0)^2+4=4</math> and <math style="vertical-align: -5px">u_2=2^4+2(2)^2+4=28.</math> |
|- | |- | ||
|Therefore, the integral becomes | |Therefore, the integral becomes | ||
Revision as of 18:23, 26 February 2017
Evaluate
(a)
(b)
| Foundations: |
|---|
| How would you integrate |
|
You could use -substitution. |
| Let |
| Then, |
|
Thus, |
|
|
Solution:
(a)
| Step 1: |
|---|
| We multiply the product inside the integral to get |
|
|
| Step 2: |
|---|
| We integrate to get |
| We now evaluate to get |
|
|
(b)
| Step 1: |
|---|
| We use -substitution. |
| Let |
| Then, and |
| Also, we need to change the bounds of integration. |
| Plugging in our values into the equation |
| we get and |
| Therefore, the integral becomes |
| Step 2: |
|---|
| We now have |
|
|
| Therefore, |
| Final Answer: |
|---|
| (a) |
| (b) |