Difference between revisions of "009B Sample Midterm 1, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
− | <span class="exam">Let <math>f(x)=1-x^2</math>. | + | <span class="exam">Let <math>f(x)=1-x^2</math>. |
− | <span class="exam">(a) Compute the left-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes. | + | <span class="exam">(a) Compute the left-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes. |
− | <span class="exam">(b) Compute the right-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes. | + | <span class="exam">(b) Compute the right-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes. |
− | <span class="exam">(c) Express <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit. | + | <span class="exam">(c) Express <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit. |
Line 25: | Line 25: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. | + | |Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. |
|- | |- | ||
|So, the left-hand Riemann sum is | |So, the left-hand Riemann sum is | ||
Line 49: | Line 49: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. | + | |Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. |
|- | |- | ||
|So, the right-hand Riemann sum is | |So, the right-hand Riemann sum is | ||
Line 72: | Line 72: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Let <math style="vertical-align: 0px">n</math> be the number of rectangles used in the right-hand Riemann sum for <math style="vertical-align: -5px">f(x)=1-x^2.</math> | + | |Let <math style="vertical-align: 0px">n</math> be the number of rectangles used in the right-hand Riemann sum for <math style="vertical-align: -5px">f(x)=1-x^2.</math> |
|- | |- | ||
|The width of each rectangle is | |The width of each rectangle is | ||
Line 86: | Line 86: | ||
| <math style="vertical-align: -14px">\Delta x \bigg(f\bigg(1\cdot \frac{3}{n}\bigg)+f\bigg(2\cdot \frac{3}{n}\bigg)+f\bigg(3\cdot \frac{3}{n}\bigg)+\ldots +f(3)\bigg).</math> | | <math style="vertical-align: -14px">\Delta x \bigg(f\bigg(1\cdot \frac{3}{n}\bigg)+f\bigg(2\cdot \frac{3}{n}\bigg)+f\bigg(3\cdot \frac{3}{n}\bigg)+\ldots +f(3)\bigg).</math> | ||
|- | |- | ||
− | |Finally, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit. | + | |Finally, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit. |
|- | |- | ||
− | |Thus, <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> is equal to <math style="vertical-align: -21px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg).</math> | + | |Thus, <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> is equal to <math style="vertical-align: -21px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg).</math> |
|} | |} | ||
Revision as of 18:01, 26 February 2017
Let .
(a) Compute the left-hand Riemann sum approximation of with boxes.
(b) Compute the right-hand Riemann sum approximation of with boxes.
(c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
Foundations: |
---|
1. The height of each rectangle in the left-hand Riemann sum is given by choosing the left endpoint of the interval. |
2. The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval. |
3. See the Riemann sums (insert link) for more information. |
Solution:
(a)
Step 1: |
---|
Since our interval is and we are using 3 rectangles, each rectangle has width 1. |
So, the left-hand Riemann sum is |
Step 2: |
---|
Thus, the left-hand Riemann sum is |
|
(b)
Step 1: |
---|
Since our interval is and we are using 3 rectangles, each rectangle has width 1. |
So, the right-hand Riemann sum is |
Step 2: |
---|
Thus, the right-hand Riemann sum is |
|
(c)
Step 1: |
---|
Let be the number of rectangles used in the right-hand Riemann sum for |
The width of each rectangle is |
Step 2: |
---|
So, the right-hand Riemann sum is |
Finally, we let go to infinity to get a limit. |
Thus, is equal to |
Final Answer: |
---|
(a) |
(b) |
(c) |