Difference between revisions of "009B Sample Midterm 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam">Let <math>f(x)=1-x^2</math>.
+
<span class="exam">Let &nbsp;<math>f(x)=1-x^2</math>.
  
<span class="exam">(a) Compute the left-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes.
+
<span class="exam">(a) Compute the left-hand Riemann sum approximation of &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">n=3</math>&nbsp; boxes.
  
<span class="exam">(b) Compute the right-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes.
+
<span class="exam">(b) Compute the right-hand Riemann sum approximation of &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">n=3</math>&nbsp; boxes.
  
<span class="exam">(c) Express <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
+
<span class="exam">(c) Express &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
  
  
Line 25: Line 25:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using 3 rectangles, each rectangle has width 1.  
+
|Since our interval is &nbsp;<math style="vertical-align: -5px">[0,3]</math>&nbsp; and we are using 3 rectangles, each rectangle has width 1.  
 
|-
 
|-
 
|So, the left-hand Riemann sum is  
 
|So, the left-hand Riemann sum is  
Line 49: Line 49:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using 3 rectangles, each rectangle has width 1.  
+
|Since our interval is &nbsp;<math style="vertical-align: -5px">[0,3]</math>&nbsp; and we are using 3 rectangles, each rectangle has width 1.  
 
|-
 
|-
 
|So, the right-hand Riemann sum is
 
|So, the right-hand Riemann sum is
Line 72: Line 72:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Let <math style="vertical-align: 0px">n</math> be the number of rectangles used in the right-hand Riemann sum for <math style="vertical-align: -5px">f(x)=1-x^2.</math>
+
|Let &nbsp;<math style="vertical-align: 0px">n</math>&nbsp; be the number of rectangles used in the right-hand Riemann sum for &nbsp;<math style="vertical-align: -5px">f(x)=1-x^2.</math>
 
|-
 
|-
 
|The width of each rectangle is  
 
|The width of each rectangle is  
Line 86: Line 86:
 
| &nbsp;&nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\Delta x \bigg(f\bigg(1\cdot \frac{3}{n}\bigg)+f\bigg(2\cdot \frac{3}{n}\bigg)+f\bigg(3\cdot \frac{3}{n}\bigg)+\ldots +f(3)\bigg).</math>
 
| &nbsp;&nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\Delta x \bigg(f\bigg(1\cdot \frac{3}{n}\bigg)+f\bigg(2\cdot \frac{3}{n}\bigg)+f\bigg(3\cdot \frac{3}{n}\bigg)+\ldots +f(3)\bigg).</math>
 
|-
 
|-
|Finally, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit.   
+
|Finally, we let &nbsp;<math style="vertical-align: 0px">n</math>&nbsp; go to infinity to get a limit.   
 
|-
 
|-
|Thus, <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> is equal to <math style="vertical-align: -21px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg).</math>
+
|Thus, &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; is equal to &nbsp;<math style="vertical-align: -21px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg).</math>
 
|}
 
|}
  

Revision as of 18:01, 26 February 2017

Let  .

(a) Compute the left-hand Riemann sum approximation of    with    boxes.

(b) Compute the right-hand Riemann sum approximation of    with    boxes.

(c) Express    as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.


Foundations:  
1. The height of each rectangle in the left-hand Riemann sum is given by choosing the left endpoint of the interval.
2. The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval.
3. See the Riemann sums (insert link) for more information.


Solution:

(a)

Step 1:  
Since our interval is    and we are using 3 rectangles, each rectangle has width 1.
So, the left-hand Riemann sum is
      
Step 2:  
Thus, the left-hand Riemann sum is

       

(b)

Step 1:  
Since our interval is    and we are using 3 rectangles, each rectangle has width 1.
So, the right-hand Riemann sum is
      
Step 2:  
Thus, the right-hand Riemann sum is

       

(c)

Step 1:  
Let    be the number of rectangles used in the right-hand Riemann sum for  
The width of each rectangle is
       
Step 2:  
So, the right-hand Riemann sum is
      
Finally, we let    go to infinity to get a limit.
Thus,    is equal to  


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam