Difference between revisions of "009B Sample Midterm 1, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 19: | Line 19: | ||
|- | |- | ||
| | | | ||
− | Let <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x~dx.</math> | + | Let <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x~dx.</math> |
|- | |- | ||
− | | Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and <math style="vertical-align: -12px">v=\frac{x^2}{2}.</math> | + | | Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and <math style="vertical-align: -12px">v=\frac{x^2}{2}.</math> |
|- | |- | ||
| | | | ||
Line 40: | Line 40: | ||
|We proceed using integration by parts. | |We proceed using integration by parts. | ||
|- | |- | ||
− | |Let <math style="vertical-align: 0px">u=x^2</math> and <math style="vertical-align: 0px">dv=e^xdx.</math> | + | |Let <math style="vertical-align: 0px">u=x^2</math> and <math style="vertical-align: 0px">dv=e^xdx.</math> |
|- | |- | ||
− | |Then, <math style="vertical-align: 0px">du=2xdx</math> and <math style="vertical-align: 0px">v=e^x.</math> | + | |Then, <math style="vertical-align: 0px">du=2xdx</math> and <math style="vertical-align: 0px">v=e^x.</math> |
|- | |- | ||
|Therefore, we have | |Therefore, we have | ||
Line 54: | Line 54: | ||
|Now, we need to use integration by parts again. | |Now, we need to use integration by parts again. | ||
|- | |- | ||
− | |Let <math style="vertical-align: 0px">u=2x</math> and <math style="vertical-align: 0px">dv=e^xdx.</math> | + | |Let <math style="vertical-align: 0px">u=2x</math> and <math style="vertical-align: 0px">dv=e^xdx.</math> |
|- | |- | ||
− | |Then, <math style="vertical-align: 0px">du=2dx</math> and <math style="vertical-align: 0px">v=e^x.</math> | + | |Then, <math style="vertical-align: 0px">du=2dx</math> and <math style="vertical-align: 0px">v=e^x.</math> |
|- | |- | ||
|Building on the previous step, we have | |Building on the previous step, we have |
Revision as of 17:57, 26 February 2017
Evaluate the indefinite and definite integrals.
(a)
(b)
Foundations: |
---|
1. Integration by parts tells us that |
2. How would you integrate |
You could use integration by parts. |
Let and |
Then, and |
|
Solution:
(a)
Step 1: |
---|
We proceed using integration by parts. |
Let and |
Then, and |
Therefore, we have |
Step 2: |
---|
Now, we need to use integration by parts again. |
Let and |
Then, and |
Building on the previous step, we have |
(b)
Step 1: |
---|
We proceed using integration by parts. |
Let and |
Then, and |
Therefore, we have |
|
Step 2: |
---|
Now, we evaluate to get |
Final Answer: |
---|
(a) |
(b) |