Difference between revisions of "009A Sample Midterm 3, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam">Find the equation of the tangent line to <math style="vertical-align: -4px">y=3\sqrt{-2x+5}</math> at <math style="vertical-align: -4px">(-2,9).</math>
+
<span class="exam">Find the equation of the tangent line to &nbsp;<math style="vertical-align: -4px">y=3\sqrt{-2x+5}</math>&nbsp; at &nbsp;<math style="vertical-align: -4px">(-2,9).</math>
  
  
Line 5: Line 5:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|'''Equation of a tangent line'''
+
|The equation of the tangent line to &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; at the point &nbsp;<math style="vertical-align: -5px">(a,b)</math>&nbsp; is
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; The equation of the tangent line to <math style="vertical-align: -5px">f(x)</math> at the point <math style="vertical-align: -5px">(a,b)</math> is
+
|
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">y=m(x-a)+b</math> where <math style="vertical-align: -5px">m=f'(a).</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">y=m(x-a)+b</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">m=f'(a).</math>
 
|}
 
|}
  
Line 20: Line 20:
 
|First, we need to calculate the slope of the tangent line.
 
|First, we need to calculate the slope of the tangent line.
 
|-
 
|-
|Let <math style="vertical-align: -5px">f(x)=3\sqrt{-2x+5}.</math>
+
|Let &nbsp;<math style="vertical-align: -5px">f(x)=3\sqrt{-2x+5}.</math>
 
|-
 
|-
 
|From Problem 3, we have  
 
|From Problem 3, we have  
Line 43: Line 43:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, the tangent line has slope <math style="vertical-align: -1px">m=-1</math>
+
|Now, the tangent line has slope &nbsp;<math style="vertical-align: -1px">m=-1</math>
 
|-
 
|-
|and passes through the point <math style="vertical-align: -5px">(-2,9).</math>
+
|and passes through the point &nbsp;<math style="vertical-align: -5px">(-2,9).</math>
 
|-
 
|-
 
|Hence, the equation of the tangent line is  
 
|Hence, the equation of the tangent line is  

Revision as of 17:45, 26 February 2017

Find the equation of the tangent line to    at  


Foundations:  
The equation of the tangent line to    at the point    is
          where  


Solution:

Step 1:  
First, we need to calculate the slope of the tangent line.
Let  
From Problem 3, we have
       
Therefore, the slope of the tangent line is

       

Step 2:  
Now, the tangent line has slope  
and passes through the point  
Hence, the equation of the tangent line is
       


Final Answer:  
       

Return to Sample Exam