Difference between revisions of "009A Sample Midterm 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' If <math style="vertical-align: -13px">\lim_{x\rightarrow a} g(x)\neq 0,</math> we have
+
|'''1.''' If &nbsp;<math style="vertical-align: -13px">\lim_{x\rightarrow a} g(x)\neq 0,</math>&nbsp; we have
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math>
 
|-
 
|-
|'''2.''' <math style="vertical-align: -15px">\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math>
+
|'''2.''' &nbsp;<math style="vertical-align: -15px">\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math>
 
|}
 
|}
  
Line 43: Line 43:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Since <math style="vertical-align: -13px">\lim_{x\rightarrow 3} 2x=6\ne 0,</math> we have
+
|Since &nbsp;<math style="vertical-align: -13px">\lim_{x\rightarrow 3} 2x=6\ne 0,</math>&nbsp; we have
 
|-
 
|-
 
|
 
|
Line 54: Line 54:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|Multiplying both sides by <math style="vertical-align: -5px">6,</math> we get
+
|Multiplying both sides by &nbsp;<math style="vertical-align: -5px">6,</math>&nbsp; we get
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 3} f(x)=6.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 3} f(x)=6.</math>

Revision as of 17:41, 26 February 2017

Find the following limits:

(a) If    find  

(b) Find  

(c) Evaluate  


Foundations:  
1. If    we have
       
2.  


Solution:

(a)

Step 1:  
First, we have
       
Therefore,
       
Step 2:  
Since    we have

       

Multiplying both sides by    we get
       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we have

       

(c)

Step 1:  
First, we have
       
Step 2:  
Now, we use the properties of limits to get

       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam