Difference between revisions of "009A Sample Midterm 2"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
<span class="exam"> Evaluate the following limits.
 
<span class="exam"> Evaluate the following limits.
  
<span class="exam">(a) Find <math style="vertical-align: -14px">\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}</math>
+
<span class="exam">(a) Find &nbsp;<math style="vertical-align: -14px">\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}</math>
  
<span class="exam">(b) Find <math style="vertical-align: -19px">\lim _{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)} </math>
+
<span class="exam">(b) Find &nbsp;<math style="vertical-align: -19px">\lim _{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)} </math>
  
<span class="exam">(c) Evaluate <math style="vertical-align: -20px">\lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x) </math>
+
<span class="exam">(c) Evaluate &nbsp;<math style="vertical-align: -20px">\lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x) </math>
  
 
== [[009A_Sample Midterm 2,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
== [[009A_Sample Midterm 2,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==

Revision as of 16:54, 26 February 2017

This is a sample, and is meant to represent the material usually covered in Math 9A for the midterm. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Evaluate the following limits.

(a) Find  

(b) Find  

(c) Evaluate  

 Problem 2 

The function is a polynomial and therefore continuous everywhere.

(a) State the Intermediate Value Theorem.

(b) Use the Intermediate Value Theorem to show that has a zero in the interval

 Problem 3 

Use the definition of the derivative to find     for the function

 Problem 4 

Find the derivatives of the following functions. Do not simplify.

(a)  

(b)   where

 Problem 5 

Find the derivatives of the following functions. Do not simplify.

(a)  

(b)  

(c)