Difference between revisions of "009A Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 21: Line 21:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' If <math style="vertical-align: -15px">\lim_{x\rightarrow a^-} f(x)=\lim_{x\rightarrow a^+} f(x)=c,</math>
+
|'''1.''' If &nbsp;<math style="vertical-align: -15px">\lim_{x\rightarrow a^-} f(x)=\lim_{x\rightarrow a^+} f(x)=c,</math>
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; then <math style="vertical-align: -12px">\lim_{x\rightarrow a} f(x)=c.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; then &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow a} f(x)=c.</math>
 
|-
 
|-
|'''2.''' '''Definition of continuous'''
+
|'''2.''' &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous at &nbsp;<math style="vertical-align: 0px">x=a</math>&nbsp; if  
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">f(x)</math> is continuous at <math style="vertical-align: 0px">x=a</math> if  
 
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a).</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a).</math>
Line 41: Line 39:
 
|Notice that we are calculating a left hand limit.
 
|Notice that we are calculating a left hand limit.
 
|-
 
|-
|Thus, we are looking at values of <math style="vertical-align: 0px">x</math> that are smaller than <math style="vertical-align: -2px">1.</math>
+
|Thus, we are looking at values of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; that are smaller than &nbsp;<math style="vertical-align: -2px">1.</math>
 
|-
 
|-
|Using the definition of <math style="vertical-align: -5px">f(x)</math>, we have
+
|Using the definition of &nbsp;<math style="vertical-align: -5px">f(x),</math>&nbsp; we have
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^-} f(x)=\lim_{x\rightarrow 1^-} x^2.</math>  
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^-} f(x)=\lim_{x\rightarrow 1^-} x^2.</math>  
Line 71: Line 69:
 
|Notice that we are calculating a right hand limit.
 
|Notice that we are calculating a right hand limit.
 
|-
 
|-
|Thus, we are looking at values of <math style="vertical-align: 0px">x</math> that are bigger than <math style="vertical-align: -2px">1.</math>
+
|Thus, we are looking at values of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; that are bigger than &nbsp;<math style="vertical-align: -2px">1.</math>
 
|-
 
|-
|Using the definition of <math style="vertical-align: -5px">f(x)</math>, we have
+
|Using the definition of &nbsp;<math style="vertical-align: -5px">f(x),</math>&nbsp; we have
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^+} f(x)=\lim_{x\rightarrow 1^+} \sqrt{x}.</math>  
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^+} f(x)=\lim_{x\rightarrow 1^+} \sqrt{x}.</math>  
Line 140: Line 138:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1}f(x)=f(1),</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1}f(x)=f(1),</math>
 
|-
 
|-
|<math style="vertical-align: -5px">f(x)</math> is continuous at <math style="vertical-align: -1px">x=1.</math>
+
|<math style="vertical-align: -5px">f(x)</math> &nbsp;is continuous at &nbsp;<math style="vertical-align: -1px">x=1.</math>
 
|-
 
|-
 
|
 
|

Revision as of 16:46, 26 February 2017

Consider the following function  

(a) Find  

(b) Find  

(c) Find  

(d) Is    continuous at    Briefly explain.


Foundations:  
1. If  
        then  
2.    is continuous at    if
       


Solution:

(a)

Step 1:  
Notice that we are calculating a left hand limit.
Thus, we are looking at values of    that are smaller than  
Using the definition of    we have
       
Step 2:  
Now, we have

       

(b)

Step 1:  
Notice that we are calculating a right hand limit.
Thus, we are looking at values of    that are bigger than  
Using the definition of    we have
       
Step 2:  
Now, we have

       

(c)

Step 1:  
From (a) and (b), we have
       
and
       
Step 2:  
Since
       
we have
       

(d)

Step 1:  
From (c), we have
       
Also,
       
Step 2:  
Since
       
 is continuous at  


Final Answer:  
    (a)    
    (b)    
    (c)    
    (d)     is continuous at since

Return to Sample Exam