Difference between revisions of "009C Sample Final 1, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 6: Line 6:
 
<span class="exam">(a) Sketch the curve.
 
<span class="exam">(a) Sketch the curve.
  
<span class="exam">(b) Compute the equation of the tangent line at <math>t_0=\frac{\pi}{4}</math>.
+
<span class="exam">(b) Compute the equation of the tangent line at &nbsp; <math>t_0=\frac{\pi}{4}</math>.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 19: Line 19:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;The slope is <math style="vertical-align: -21px">m=\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;The slope is &nbsp;<math style="vertical-align: -21px">m=\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}.</math>
 
|}
 
|}
  
Line 38: Line 38:
 
|First, we need to find the slope of the tangent line.  
 
|First, we need to find the slope of the tangent line.  
 
|-
 
|-
|Since <math style="vertical-align: -14px">\frac{dy}{dt}=-4\sin t</math> and <math style="vertical-align: -14px">\frac{dx}{dt}=3\cos t,</math> we have
+
|Since &nbsp; <math style="vertical-align: -14px">\frac{dy}{dt}=-4\sin t</math> &nbsp; and &nbsp; <math style="vertical-align: -14px">\frac{dx}{dt}=3\cos t,</math>&nbsp; we have
 
|-
 
|-
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{-4\sin t}{3\cos t}.</math>
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{-4\sin t}{3\cos t}.</math>
 
|-
 
|-
|So, at <math>t_0=\frac{\pi}{4},</math> the slope of the tangent line is  
+
|So, at &nbsp;<math>t_0=\frac{\pi}{4},</math>&nbsp; the slope of the tangent line is  
 
|-
 
|-
 
|
 
|
Line 54: Line 54:
 
|Since we have the slope of the tangent line, we just need a find a point on the line in order to write the equation.
 
|Since we have the slope of the tangent line, we just need a find a point on the line in order to write the equation.
 
|-
 
|-
|If we plug in <math>t_0=\frac{\pi}{4}</math> into the equations for <math style="vertical-align: -5px">x(t)</math> and <math style="vertical-align: -5px">y(t),</math> we get
+
|If we plug in &nbsp; <math>t_0=\frac{\pi}{4}</math>&nbsp; into the equations for &nbsp;<math style="vertical-align: -5px">x(t)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">y(t),</math>&nbsp; we get
 
|-
 
|-
 
|
 
|
Line 62: Line 62:
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>y\bigg(\frac{\pi}{4}\bigg)=4\cos\bigg(\frac{\pi}{4}\bigg)=2\sqrt{2}.</math>
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>y\bigg(\frac{\pi}{4}\bigg)=4\cos\bigg(\frac{\pi}{4}\bigg)=2\sqrt{2}.</math>
 
|-
 
|-
|Thus, the point <math>\bigg(\frac{3\sqrt{2}}{2},2\sqrt{2}\bigg)</math> is on the tangent line.
+
|Thus, the point &nbsp;<math>\bigg(\frac{3\sqrt{2}}{2},2\sqrt{2}\bigg)</math>&nbsp; is on the tangent line.
 
|}
 
|}
  
Line 68: Line 68:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Using the point found in Step 2, the equation of the tangent line at <math>t_0=\frac{\pi}{4}</math> is  
+
|Using the point found in Step 2, the equation of the tangent line at &nbsp; <math>t_0=\frac{\pi}{4}</math>&nbsp; is  
 
|-
 
|-
 
|
 
|
Line 78: Line 78:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; See Step 1 above for the graph.  
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; See above.  
 
|-
 
|-
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -14px">y=\frac{-4}{3}\bigg(x-\frac{3\sqrt{2}}{2}\bigg)+2\sqrt{2}</math>  
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -14px">y=\frac{-4}{3}\bigg(x-\frac{3\sqrt{2}}{2}\bigg)+2\sqrt{2}</math>  
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:31, 26 February 2017

A curve is given in polar parametrically by

(a) Sketch the curve.

(b) Compute the equation of the tangent line at   .

Foundations:  
1. What two pieces of information do you need to write the equation of a line?

       You need the slope of the line and a point on the line.

2. What is the slope of the tangent line of a parametric curve?

       The slope is  


Solution:

(a)  
Insert sketch of curve

(b)

Step 1:  
First, we need to find the slope of the tangent line.
Since     and     we have

       

So, at    the slope of the tangent line is

       

Step 2:  
Since we have the slope of the tangent line, we just need a find a point on the line in order to write the equation.
If we plug in     into the equations for    and    we get

        and

       

Thus, the point    is on the tangent line.
Step 3:  
Using the point found in Step 2, the equation of the tangent line at     is

       


Final Answer:  
   (a)     See above.
   (b)    

Return to Sample Exam