Difference between revisions of "009C Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|How do you calculate <math style="vertical-align: -5px">y'</math> for a polar curve <math style="vertical-align: -5px">r=f(\theta)?</math>
+
|How do you calculate &nbsp; <math style="vertical-align: -5px">y'</math> &nbsp; for a polar curve &nbsp;<math style="vertical-align: -5px">r=f(\theta)?</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;Since <math style="vertical-align: -5px">x=r\cos(\theta),~y=r\sin(\theta),</math> we have
+
&nbsp; &nbsp; &nbsp; &nbsp;Since &nbsp; <math style="vertical-align: -5px">x=r\cos(\theta),~y=r\sin(\theta),</math>&nbsp; we have
 
|-
 
|-
 
|
 
|
Line 39: Line 39:
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math>
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math>
 
|-
 
|-
|Since <math style="vertical-align: -2px">r=1+\sin\theta,</math>
+
|Since &nbsp;<math style="vertical-align: -4px">r=1+\sin\theta,</math>
 
|-
 
|-
 
|
 
|
Line 66: Line 66:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We have <math>\frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math>
+
|We have &nbsp; <math>\frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math>
 
|-
 
|-
|So, first we need to find <math>\frac{dy'}{d\theta}.</math>
+
|So, first we need to find &nbsp; <math>\frac{dy'}{d\theta}.</math>
 
|-
 
|-
 
|We have
 
|We have
Line 83: Line 83:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|since <math style="vertical-align: -2px">\sin^2\theta+\cos^2\theta=1</math> and <math style="vertical-align: -5px">2\cos^2(2\theta)+2\sin^2(2\theta)=2.</math>
+
|since &nbsp;<math style="vertical-align: -2px">\sin^2\theta+\cos^2\theta=1</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">2\cos^2(2\theta)+2\sin^2(2\theta)=2.</math>&nbsp;
 
|}
 
|}
  
Line 89: Line 89:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
| Now, using the resulting formula for <math>\frac{dy'}{d\theta},</math> we get  
+
| Now, using the resulting formula for &nbsp; <math>\frac{dy'}{d\theta},</math>&nbsp; we get  
 
|-
 
|-
 
|
 
|
Line 101: Line 101:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; See Step 1 above for the graph.
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; See (a) above for the graph.
 
|-
 
|-
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}</math>
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}</math>

Revision as of 15:21, 26 February 2017

A curve is given in polar coordinates by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=1+\sin\theta}

(a) Sketch the curve.

(b) Compute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'=\frac{dy}{dx}} .

(c) Compute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y''=\frac{d^2y}{dx^2}} .

Foundations:  
How do you calculate   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'}   for a polar curve  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=f(\theta)?}

       Since   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=r\cos(\theta),~y=r\sin(\theta),}   we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.}


Solution:

(a)  
Insert sketch of graph

(b)

Step 1:  
First, recall we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.}

Since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=1+\sin\theta,}

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dr}{d\theta}=\cos\theta.}

Hence,

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'=\frac{\cos\theta\sin\theta+(1+\sin\theta)\cos\theta}{\cos^2\theta-(1+\sin\theta)\sin\theta}.}

Step 2:  
Thus, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{y'} & = & \displaystyle{\frac{2\cos\theta\sin\theta+\cos\theta}{\cos^2\theta-\sin^2\theta-\sin\theta}}\\ &&\\ & = & \displaystyle{\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}.}\\ \end{array}}

(c)

Step 1:  
We have   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.}
So, first we need to find   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy'}{d\theta}.}
We have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}\bigg)}\\ &&\\ & = & \displaystyle{\frac{(\cos(2\theta)-\sin\theta)(2\cos(2\theta)-\sin\theta)-(\sin(2\theta)+\cos\theta)(-2\sin(2\theta)-\cos\theta)}{(\cos(2\theta)-\sin\theta)^2}}\\ &&\\ & = & \displaystyle{\frac{2\cos^2(2\theta)+2\sin^2(2\theta)-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta+\sin^2\theta+\cos^2\theta}{(\cos(2\theta)-\sin\theta)^2}}\\ &&\\ & = & \displaystyle{\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^2}}\\ \end{array}}

since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2\theta+\cos^2\theta=1}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\cos^2(2\theta)+2\sin^2(2\theta)=2.}  
Step 2:  
Now, using the resulting formula for   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy'}{d\theta},}   we get

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}.}


Final Answer:  
   (a)     See (a) above for the graph.
   (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}}
   (c)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}}

Return to Sample Exam