Difference between revisions of "009C Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 4: Line 4:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|The Taylor polynomial of <math style="vertical-align: -5px">f(x)</math> at <math style="vertical-align: -1px">a</math> is
+
|The Taylor polynomial of &nbsp; <math style="vertical-align: -5px">f(x)</math> &nbsp; at &nbsp; <math style="vertical-align: -1px">a</math> &nbsp; is
 
|-
 
|-
 
|
 
|
Line 62: Line 62:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Since <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!},</math> the Taylor polynomial of degree 4 of <math style="vertical-align: -5px">f(x)=\cos^2x</math> is  
+
|Since &nbsp; <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!},</math>&nbsp; the Taylor polynomial of degree 4 of &nbsp;<math style="vertical-align: -5px">f(x)=\cos^2x</math>&nbsp; is  
 
|
 
|
 
|-
 
|-

Revision as of 16:17, 26 February 2017

Find the Taylor polynomial of degree 4 of at .

Foundations:  
The Taylor polynomial of     at     is

        where


Solution:

Step 1:  
First, we make a table to find the coefficients of the Taylor polynomial.
Step 2:  
Since     the Taylor polynomial of degree 4 of    is

       


Final Answer:  
       

Return to Sample Exam