Difference between revisions of "009C Sample Final 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
|'''1.'''  '''Ratio Test'''  
 
|'''1.'''  '''Ratio Test'''  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then,
+
|&nbsp; &nbsp; &nbsp; &nbsp;Let &nbsp;<math style="vertical-align: -7px">\sum a_n</math>&nbsp; be a series and &nbsp;<math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>&nbsp; Then,
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;If <math style="vertical-align: -1px">L<1,</math> the series is absolutely convergent.  
+
&nbsp; &nbsp; &nbsp; &nbsp;If &nbsp;<math style="vertical-align: -4px">L<1,</math>&nbsp; the series is absolutely convergent.  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;If <math style="vertical-align: -1px">L>1,</math> the series is divergent.
+
&nbsp; &nbsp; &nbsp; &nbsp;If &nbsp;<math style="vertical-align: -4px">L>1,</math>&nbsp; the series is divergent.
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;If <math style="vertical-align: -1px">L=1,</math> the test is inconclusive.
+
&nbsp; &nbsp; &nbsp; &nbsp;If &nbsp;<math style="vertical-align: -4px">L=1,</math>&nbsp; the test is inconclusive.
 
|-
 
|-
 
|'''2.''' After you find the radius of convergence, you need to check the endpoints of your interval  
 
|'''2.''' After you find the radius of convergence, you need to check the endpoints of your interval  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;for convergence since the Ratio Test is inconclusive when <math style="vertical-align: -1px">L=1.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;for convergence since the Ratio Test is inconclusive when &nbsp;<math style="vertical-align: -1px">L=1.</math>
 
|}
 
|}
  
Line 56: Line 56:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Thus, we have <math style="vertical-align: -5px">|x|<1</math> and the radius of convergence of this series is <math style="vertical-align: -1px">1.</math>
+
|Thus, we have &nbsp; <math style="vertical-align: -5px">|x|<1</math> &nbsp; and the radius of convergence of this series is &nbsp; <math style="vertical-align: -1px">1.</math>
 
|}
 
|}
  
Line 64: Line 64:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|From part (a), we know the series converges inside the interval <math style="vertical-align: -5px">(-1,1).</math>
+
|From part (a), we know the series converges inside the interval &nbsp;<math style="vertical-align: -5px">(-1,1).</math>
 
|-
 
|-
 
|Now, we need to check the endpoints of the interval for convergence.
 
|Now, we need to check the endpoints of the interval for convergence.
Line 72: Line 72:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|For <math style="vertical-align: -2px">x=1,</math> the series becomes <math>\sum_{n=1}^{\infty}n,</math> which diverges by the Divergence Test.
+
|For &nbsp;<math style="vertical-align: -4px">x=1,</math> &nbsp; the series becomes &nbsp; <math>\sum_{n=1}^{\infty}n,</math> &nbsp; which diverges by the Divergence Test.
 
|}
 
|}
  
Line 78: Line 78:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|For <math style="vertical-align: -2px">x=-1,</math> the series becomes <math>\sum_{n=1}^{\infty}(-1)^n n,</math> which diverges by the Divergence Test.
+
|For &nbsp;<math style="vertical-align: -4px">x=-1,</math> &nbsp; the series becomes &nbsp;<math>\sum_{n=1}^{\infty}(-1)^n n,</math> &nbsp;which diverges by the Divergence Test.
 
|-
 
|-
|Thus, the interval of convergence is <math style="vertical-align: -5px">(-1,1).</math>
+
|Thus, the interval of convergence is &nbsp; <math style="vertical-align: -5px">(-1,1).</math>
 
|}
 
|}
  
Line 88: Line 88:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Recall that we have the geometric series formula <math>\frac{1}{1-x}=\sum_{n=0}^{\infty} x^n</math> for <math>|x|<1.</math>
+
|Recall that we have the geometric series formula &nbsp; <math>\frac{1}{1-x}=\sum_{n=0}^{\infty} x^n</math> &nbsp; for &nbsp; <math>|x|<1.</math>
 
|-
 
|-
 
|Now, we take the derivative of both sides of the last equation to get
 
|Now, we take the derivative of both sides of the last equation to get
Line 99: Line 99:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we multiply the last equation in Step 1 by <math style="vertical-align: 0px">x.</math>
+
|Now, we multiply the last equation in Step 1 by &nbsp;<math style="vertical-align: 0px">x.</math>
 
|-
 
|-
 
|So, we have  
 
|So, we have  
Line 106: Line 106:
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{x}{(1-x)^2}=\sum_{n=1}^{\infty}nx^{n}=f(x).</math>
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{x}{(1-x)^2}=\sum_{n=1}^{\infty}nx^{n}=f(x).</math>
 
|-
 
|-
|Thus, <math>f(x)=\frac{x}{(1-x)^2}.</math>
+
|Thus, &nbsp;<math>f(x)=\frac{x}{(1-x)^2}.</math>
 
|}
 
|}
  

Revision as of 16:15, 26 February 2017

Let

(a) Find the radius of convergence of the power series.

(b) Determine the interval of convergence of the power series.

(c) Obtain an explicit formula for the function .

Foundations:  
1. Ratio Test
       Let    be a series and    Then,

       If    the series is absolutely convergent.

       If    the series is divergent.

       If    the test is inconclusive.

2. After you find the radius of convergence, you need to check the endpoints of your interval

       for convergence since the Ratio Test is inconclusive when  


Solution:

(a)

Step 1:  
To find the radius of convergence, we use the ratio test. We have

       

Step 2:  
Thus, we have     and the radius of convergence of this series is  

(b)

Step 1:  
From part (a), we know the series converges inside the interval  
Now, we need to check the endpoints of the interval for convergence.
Step 2:  
For     the series becomes     which diverges by the Divergence Test.
Step 3:  
For     the series becomes    which diverges by the Divergence Test.
Thus, the interval of convergence is  

(c)

Step 1:  
Recall that we have the geometric series formula     for  
Now, we take the derivative of both sides of the last equation to get

       

Step 2:  
Now, we multiply the last equation in Step 1 by  
So, we have

       

Thus,  


Final Answer:  
   (a)    
   (b)    
   (c)    

Return to Sample Exam