Difference between revisions of "009C Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
|-
 
|-
 
|
 
|
'''1.''' For a geometric series <math>\sum_{n=0}^{\infty} ar^n</math> with <math>|r|<1,</math>  
+
'''1.''' For a geometric series <math>\sum_{n=0}^{\infty} ar^n</math> &nbsp; with &nbsp; <math>|r|<1,</math>  
 
|-
 
|-
 
|
 
|
Line 15: Line 15:
 
|-
 
|-
 
|
 
|
'''2.''' For a telescoping series, we find the sum by first looking at the partial sum <math style="vertical-align: -3px">s_k</math>
+
'''2.''' For a telescoping series, we find the sum by first looking at the partial sum &nbsp; <math style="vertical-align: -3px">s_k</math>
 
|-
 
|-
 
|
 
|
Line 42: Line 42:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Since <math style="vertical-align: -16px">2<e,~\bigg|-\frac{2}{e}\bigg|<1.</math> So,  
+
|Since &nbsp; <math style="vertical-align: -16px">2<e,~\bigg|-\frac{2}{e}\bigg|<1.</math>  
 +
|-
 +
|So,  
 
|-
 
|-
 
|
 
|
Line 61: Line 63:
 
|This is a telescoping series. First, we find the partial sum of this series.
 
|This is a telescoping series. First, we find the partial sum of this series.
 
|-
 
|-
|Let <math style="vertical-align: -20px">s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math>
+
|Let &nbsp; <math style="vertical-align: -20px">s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math>
 
|-
 
|-
 
|Then,  
 
|Then,  

Revision as of 15:57, 26 February 2017

Find the sum of the following series:

(a)  

(b)  

Foundations:  

1. For a geometric series   with  

       

2. For a telescoping series, we find the sum by first looking at the partial sum  

       and then calculate


Solution:

(a)

Step 1:  
First, we write

       

Step 2:  
Since  
So,

       

(b)

Step 1:  
This is a telescoping series. First, we find the partial sum of this series.
Let  
Then,

       

Step 2:  
Thus,

       


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam