Difference between revisions of "009A Sample Final 1, Problem 10"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 10: | Line 10: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
− | |||
− | |||
|- | |- | ||
|'''1.''' To find the critical points for <math style="vertical-align: -5px">f(x),</math> we set <math style="vertical-align: -5px">f'(x)=0</math> and solve for <math style="vertical-align: -1px">x.</math> | |'''1.''' To find the critical points for <math style="vertical-align: -5px">f(x),</math> we set <math style="vertical-align: -5px">f'(x)=0</math> and solve for <math style="vertical-align: -1px">x.</math> | ||
|- | |- | ||
| | | | ||
− | + | Also, we include the values of <math style="vertical-align: -1px">x</math> where <math style="vertical-align: -5px">f'(x)</math> is undefined. | |
|- | |- | ||
|'''2.''' To find the absolute maximum and minimum of <math style="vertical-align: -5px">f(x)</math> on an interval <math>[a,b],</math> | |'''2.''' To find the absolute maximum and minimum of <math style="vertical-align: -5px">f(x)</math> on an interval <math>[a,b],</math> | ||
|- | |- | ||
| | | | ||
− | + | we need to compare the <math style="vertical-align: -5px">y</math> values of our critical points with <math style="vertical-align: -5px">f(a)</math> and <math style="vertical-align: -5px">f(b).</math> | |
|} | |} | ||
Line 37: | Line 35: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{f'(x)} & = & \displaystyle{\frac{1}{3}x^{-\frac{2}{3}}(x-8)+x^{\frac{1}{3}}}\\ | \displaystyle{f'(x)} & = & \displaystyle{\frac{1}{3}x^{-\frac{2}{3}}(x-8)+x^{\frac{1}{3}}}\\ | ||
&&\\ | &&\\ | ||
Line 54: | Line 52: | ||
|- | |- | ||
| | | | ||
− | + | <math>-x^{\frac{1}{3}}\,=\,\frac{x-8}{3x^{\frac{2}{3}}}.</math> | |
|- | |- | ||
|We cross multiply to get <math style="vertical-align: 1px">-3x=x-8.</math> | |We cross multiply to get <math style="vertical-align: 1px">-3x=x-8.</math> | ||
Line 85: | Line 83: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)'''& | + | | '''(a)''' <math style="vertical-align: -4px">(0,0)</math> and <math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6))</math> |
|- | |- | ||
− | |'''(b)'''& | + | | '''(b)''' The absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -5px">2^{\frac{1}{3}}(-6).</math> |
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 18:08, 25 February 2017
Consider the following continuous function:
defined on the closed, bounded interval .
(a) Find all the critical points for .
(b) Determine the absolute maximum and absolute minimum values for on the interval .
Foundations: |
---|
1. To find the critical points for we set and solve for |
Also, we include the values of where is undefined. |
2. To find the absolute maximum and minimum of on an interval |
we need to compare the values of our critical points with and |
Solution:
(a)
Step 1: |
---|
To find the critical points, first we need to find |
Using the Product Rule, we have |
|
Step 2: |
---|
Notice is undefined when |
Now, we need to set |
So, we get |
|
We cross multiply to get |
Solving, we get |
Thus, the critical points for are and |
(b)
Step 1: |
---|
We need to compare the values of at the critical points and at the endpoints of the interval. |
Using the equation given, we have and |
Step 2: |
---|
Comparing the values in Step 1 with the critical points in (a), the absolute maximum value for is |
and the absolute minimum value for is |
Final Answer: |
---|
(a) and |
(b) The absolute minimum value for is |