Difference between revisions of "009A Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 31: Line 31:
 
|Using the Chain Rule, we have
 
|Using the Chain Rule, we have
 
|-
 
|-
|<br>
+
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{f'(x)} & = & \displaystyle{\frac{1}{\bigg(\frac{x^2-1}{x^2+1}\bigg)}\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg)}\\
 
\displaystyle{f'(x)} & = & \displaystyle{\frac{1}{\bigg(\frac{x^2-1}{x^2+1}\bigg)}\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg)}\\
 
&&\\
 
&&\\
Line 46: Line 46:
 
|To do this, we use the Quotient Rule. So, we have
 
|To do this, we use the Quotient Rule. So, we have
 
|-
 
|-
|<br>
+
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2+1}{x^2-1}\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg)}\\
 
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2+1}{x^2-1}\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg)}\\
 
&&\\
 
&&\\
Line 65: Line 65:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Again, we need to use the Chain Rule. We have
+
|We need to use the Chain Rule. We have
 
|-
 
|-
 
|
 
|
::<math>g'(x)\,=\,8\cos(4x)+4\sec^2(\sqrt{1+x^3})\bigg(\frac{d}{dx}\sqrt{1+x^3}\bigg).</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>g'(x)\,=\,8\cos(4x)+4\sec^2(\sqrt{1+x^3})\bigg(\frac{d}{dx}\sqrt{1+x^3}\bigg).</math>
 
|}
 
|}
  
Line 74: Line 74:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|We need to calculate&thinsp; <math>\frac{d}{dx}\sqrt{1+x^3}.</math>
+
|We need to calculate &nbsp; <math>\frac{d}{dx}\sqrt{1+x^3}.</math>
 
|-
 
|-
 
|We use the Chain Rule again to get
 
|We use the Chain Rule again to get
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{g'(x)} & = & \displaystyle{8\cos(4x)+4\sec^2(\sqrt{1+x^3})\bigg(\frac{d}{dx}\sqrt{1+x^3}\bigg)}\\
 
\displaystyle{g'(x)} & = & \displaystyle{8\cos(4x)+4\sec^2(\sqrt{1+x^3})\bigg(\frac{d}{dx}\sqrt{1+x^3}\bigg)}\\
 
&&\\
 
&&\\
Line 92: Line 92:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' <math style="vertical-align: -14px">f'(x)=\frac{4x}{x^4-1}</math>
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math style="vertical-align: -14px">f'(x)=\frac{4x}{x^4-1}</math>
 
|-
 
|-
|'''(b)''' <math style="vertical-align: -18px">g'(x)=8\cos(4x)+\frac{6\sec^2(\sqrt{1+x^3})x^2}{\sqrt{1+x^3}}</math>
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -18px">g'(x)=8\cos(4x)+\frac{6\sec^2(\sqrt{1+x^3})x^2}{\sqrt{1+x^3}}</math>
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:38, 25 February 2017

Find the derivatives of the following functions.

(a)  

(b)  

Foundations:  
1. Chain Rule
       
2. Quotient Rule
       
3. Trig Derivatives
       


Solution:

(a)

Step 1:  
Using the Chain Rule, we have

       

Step 2:  
Now, we need to calculate  
To do this, we use the Quotient Rule. So, we have

       

(b)

Step 1:  
We need to use the Chain Rule. We have

       

Step 2:  
We need to calculate  
We use the Chain Rule again to get

       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam