Difference between revisions of "009A Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
 
<span class="exam">In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
  
<span class="exam">(a) <math style="vertical-align: -14px">\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}</math>
+
<span class="exam">(a) &nbsp; <math style="vertical-align: -14px">\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}</math>
  
<span class="exam">(b) <math style="vertical-align: -14px">\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}</math>
+
<span class="exam">(b) &nbsp; <math style="vertical-align: -14px">\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}</math>
  
<span class="exam">(c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}</math>
+
<span class="exam">(c) &nbsp; <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 17:34, 25 February 2017

In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

(a)  

(b)  

(c)  

Foundations:  
L'Hôpital's Rule
        Suppose that   and   are both zero or both

        If   is finite or 

        then


Solution:

(a)

Step 1:  
We begin by factoring the numerator. We have

       

So, we can cancel   in the numerator and denominator. Thus, we have

       

Step 2:  
Now, we can just plug in   to get

       

(b)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       

Step 2:  
This limit is  

(c)

Step 1:  
We have

       

Since we are looking at the limit as goes to negative infinity, we have
So, we have

       

Step 2:  
We simplify to get

       

So, we have

       


Final Answer:  
    (a)   
    (b)   
    (c)   

Return to Sample Exam