Difference between revisions of "009C Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Determine whether the following series converges or diverges.
 
<span class="exam">Determine whether the following series converges or diverges.
  
::::::<math>\sum_{n=0}^{\infty} (-1)^n \frac{n!}{n^n}</math>
+
::<math>\sum_{n=0}^{\infty} (-1)^n \frac{n!}{n^n}</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|Recall:
+
|'''1.'''  '''Ratio Test'''
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then,
::'''1. Ratio Test''' Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then,
 
 
|-
 
|-
 
|
 
|
:::If <math style="vertical-align: -1px">L<1,</math> the series is absolutely convergent.  
+
&nbsp; &nbsp; &nbsp; &nbsp;If <math style="vertical-align: -1px">L<1,</math> the series is absolutely convergent.  
 
|-
 
|-
 
|
 
|
:::If <math style="vertical-align: -1px">L>1,</math> the series is divergent.
+
&nbsp; &nbsp; &nbsp; &nbsp;If <math style="vertical-align: -1px">L>1,</math> the series is divergent.
 
|-
 
|-
 
|
 
|
:::If <math style="vertical-align: -1px">L=1,</math> the test is inconclusive.
+
&nbsp; &nbsp; &nbsp; &nbsp;If <math style="vertical-align: -1px">L=1,</math> the test is inconclusive.
 
|-
 
|-
 
|
 
|
::'''2.''' If a series absolutely converges, then it also converges.  
+
'''2.''' If a series absolutely converges, then it also converges.  
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 34: Line 34:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(-1)^{n+1}(n+1)!}{(n+1)^{n+1}}\frac{n^n}{(-1)^n n!}\bigg|}\\
 
\displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(-1)^{n+1}(n+1)!}{(n+1)^{n+1}}\frac{n^n}{(-1)^n n!}\bigg|}\\
 
&&\\
 
&&\\
Line 53: Line 53:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^n}\\
 
\displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^n}\\
 
&&\\
 
&&\\
Line 72: Line 72:
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -16px">\lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -16px">\lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.</math>
 
|-
 
|-
 
|Now, we use L'Hopital's Rule to get  
 
|Now, we use L'Hopital's Rule to get  
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg)} & \overset{l'H}{=} & \displaystyle{\lim_{n \rightarrow \infty}\frac{\frac{n+1}{n}\frac{(n+1)-n}{(n+1)^2}}{-\frac{1}{n^2}}}\\
 
\displaystyle{\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg)} & \overset{l'H}{=} & \displaystyle{\lim_{n \rightarrow \infty}\frac{\frac{n+1}{n}\frac{(n+1)-n}{(n+1)^2}}{-\frac{1}{n^2}}}\\
 
&&\\
 
&&\\
Line 96: Line 96:
 
|-
 
|-
 
|
 
|
::<math>\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=e^{-1}=\frac{1}{e}<1.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=e^{-1}=\frac{1}{e}<1.</math>
 
|-
 
|-
 
|Thus, the series absolutely converges by the Ratio Test.
 
|Thus, the series absolutely converges by the Ratio Test.
Line 102: Line 102:
 
|Since the series absolutely converges, the series also converges.
 
|Since the series absolutely converges, the series also converges.
 
|}
 
|}
 +
 +
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  

Revision as of 16:56, 25 February 2017

Determine whether the following series converges or diverges.

Foundations:  
1. Ratio Test
        Let be a series and Then,

       If the series is absolutely convergent.

       If the series is divergent.

       If the test is inconclusive.

2. If a series absolutely converges, then it also converges.


Solution:

Step 1:  
We proceed using the ratio test.
We have

       

Step 2:  
Now, we continue to calculate the limit from Step 1. We have

       

Step 3:  
Now, we need to calculate
First, we write the limit as

       

Now, we use L'Hopital's Rule to get

       

Step 4:  
We go back to Step 2 and use the limit we calculated in Step 3.
So, we have

       

Thus, the series absolutely converges by the Ratio Test.
Since the series absolutely converges, the series also converges.


Final Answer:  
   The series converges.

Return to Sample Exam