Difference between revisions of "009C Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
|-
 
|Recall:
 
 
|-
 
|-
 
|
 
|
::'''1.''' For a geometric series <math>\sum_{n=0}^{\infty} ar^n</math> with <math>|r|<1,</math>  
+
'''1.''' For a geometric series <math>\sum_{n=0}^{\infty} ar^n</math> with <math>|r|<1,</math>  
 
|-
 
|-
 
|
 
|
:::<math>\sum_{n=0}^{\infty} ar^n=\frac{a}{1-r}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\sum_{n=0}^{\infty} ar^n=\frac{a}{1-r}.</math>
 
|-
 
|-
 
|
 
|
::'''2.''' For a telescoping series, we find the sum by first looking at the partial sum <math style="vertical-align: -3px">s_k</math>
+
'''2.''' For a telescoping series, we find the sum by first looking at the partial sum <math style="vertical-align: -3px">s_k</math>
 
|-
 
|-
 
|
 
|
:::and then calculate <math style="vertical-align: -14px">\lim_{k\rightarrow\infty} s_k.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;and then calculate <math style="vertical-align: -14px">\lim_{k\rightarrow\infty} s_k.</math>
 
|}
 
|}
  

Revision as of 16:50, 25 February 2017

Find the sum of the following series:

(a)

(b)

Foundations:  

1. For a geometric series with

       

2. For a telescoping series, we find the sum by first looking at the partial sum

       and then calculate


Solution:

(a)

Step 1:  
First, we write
Step 2:  
Since So,

(b)

Step 1:  
This is a telescoping series. First, we find the partial sum of this series.
Let
Then,
Step 2:  
Thus,


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam