Difference between revisions of "009C Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam"> Find the sum of the following series:  
 
<span class="exam"> Find the sum of the following series:  
  
::<span class="exam">a) <math>\sum_{n=0}^{\infty} (-2)^ne^{-n}</math>
+
<span class="exam">(a) <math>\sum_{n=0}^{\infty} (-2)^ne^{-n}</math>
  
::<span class="exam">b) <math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math>
+
<span class="exam">(b) <math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 16:44, 25 February 2017

Find the sum of the following series:

(a)

(b)

Foundations:  
Recall:
1. For a geometric series with
2. For a telescoping series, we find the sum by first looking at the partial sum
and then calculate

Solution:

(a)

Step 1:  
First, we write
Step 2:  
Since So,

(b)

Step 1:  
This is a telescoping series. First, we find the partial sum of this series.
Let
Then,
Step 2:  
Thus,
Final Answer:  
   (a)
   (b)

Return to Sample Exam