Difference between revisions of "009C Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 33: Line 33:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{\lim_{x \rightarrow \infty}\frac{3-2x^2}{5x^2 + x +1}} & \overset{l'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{-4x}{10x+1}}\\
+
\displaystyle{\lim_{x \rightarrow \infty}\frac{3-2x^2}{5x^2 + x +1}} & \overset{L'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{-4x}{10x+1}}\\
 
&&\\
 
&&\\
& \overset{l'H}{=} & \displaystyle{\frac{-4}{10}}\\
+
& \overset{L'H}{=} & \displaystyle{\frac{-4}{10}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{-2}{5}}.
 
& = & \displaystyle{\frac{-2}{5}}.

Revision as of 16:41, 25 February 2017

Compute

(a)

(b)

Foundations:  
L'Hopital's Rule

        Suppose that and are both zero or both

       If is finite or

       then

Solution:

(a)

Step 1:  
First, we switch to the limit to so that we can use L'Hopital's rule.
So, we have
Step 2:  
Hence, we have

(b)

Step 1:  
Again, we switch to the limit to so that we can use L'Hopital's rule.
So, we have
Step 2:  
Hence, we have
Final Answer:  
   (a)
   (b)

Return to Sample Exam