Difference between revisions of "009C Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|'''L'Hopital's Rule'''  
::'''L'Hopital's Rule'''  
 
 
|-
 
|-
 
|
 
|
::Suppose that <math>\lim_{x\rightarrow \infty} f(x)</math> and <math>\lim_{x\rightarrow \infty} g(x)</math> are both zero or both <math style="vertical-align: -1px">\pm \infty .</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; Suppose that <math>\lim_{x\rightarrow \infty} f(x)</math> and <math>\lim_{x\rightarrow \infty} g(x)</math> are both zero or both <math style="vertical-align: -1px">\pm \infty .</math>
 
|-
 
|-
 
|
 
|
::If <math>\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> is finite or <math style="vertical-align: -1px">\pm \infty ,</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;If <math>\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> is finite or <math style="vertical-align: -1px">\pm \infty ,</math>
 
|-
 
|-
 
|
 
|
::then <math>\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;then <math>\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
|}
 
|}
  

Revision as of 16:40, 25 February 2017

Compute

(a)

(b)

Foundations:  
L'Hopital's Rule

        Suppose that and are both zero or both

       If is finite or

       then

Solution:

(a)

Step 1:  
First, we switch to the limit to so that we can use L'Hopital's rule.
So, we have
Step 2:  
Hence, we have

(b)

Step 1:  
Again, we switch to the limit to so that we can use L'Hopital's rule.
So, we have
Step 2:  
Hence, we have
Final Answer:  
   (a)
   (b)

Return to Sample Exam