Difference between revisions of "009B Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam"> Evaluate the improper integrals:
 
<span class="exam"> Evaluate the improper integrals:
  
::<span class="exam">a) <math>\int_0^{\infty} xe^{-x}~dx</math>
+
<span class="exam">(a) <math>\int_0^{\infty} xe^{-x}~dx</math>
::<span class="exam">b) <math>\int_1^4 \frac{dx}{\sqrt{4-x}}</math>
+
 
 +
<span class="exam">(b) <math>\int_1^4 \frac{dx}{\sqrt{4-x}}</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 28: Line 29:
 
::Let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=e^xdx</math>.  
 
::Let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=e^xdx</math>.  
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 128: Line 130:
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 19:12, 18 February 2017

Evaluate the improper integrals:

(a)

(b)

Foundations:  
1. How could you write so that you can integrate?
You can write
2. How could you write  ?
The problem is that   is not continuous at .
So, you can write .
3. How would you integrate  ?
You can use integration by parts.
Let and .


Solution:

(a)

Step 1:  
First, we write .
Now, we proceed using integration by parts. Let and . Then, and .
Thus, the integral becomes
Step 2:  
For the remaining integral, we need to use -substitution. Let . Then, .
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Thus, the integral becomes
Step 3:  
Now, we evaluate to get
Using L'Hôpital's Rule, we get

(b)

Step 1:  
First, we write .
Now, we proceed by -substitution. We let . Then, .
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation , we get   and .
Thus, the integral becomes
Step 2:  
We integrate to get


Final Answer:  
(a)  
(b)  

Return to Sample Exam