Difference between revisions of "009B Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
Line 1: | Line 1: | ||
<span class="exam"> We would like to evaluate | <span class="exam"> We would like to evaluate | ||
− | + | ::<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2t\,dt\bigg).</math> | |
− | <span class="exam">a) Compute <math style="vertical-align: -15px">f(x)=\int_{-1}^{x} \sin(t^2)2t\,dt</math>. | + | <span class="exam">(a) Compute <math style="vertical-align: -15px">f(x)=\int_{-1}^{x} \sin(t^2)2t\,dt</math>. |
− | <span class="exam">b) Find <math style="vertical-align: -5px">f'(x)</math>. | + | <span class="exam">(b) Find <math style="vertical-align: -5px">f'(x)</math>. |
− | <span class="exam">c) State the Fundamental Theorem of Calculus. | + | <span class="exam">(c) State the Fundamental Theorem of Calculus. |
− | <span class="exam">d) Use the Fundamental Theorem of Calculus to compute  <math style="vertical-align: -15px">\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2t\,dt\bigg)</math>  without first computing the integral. | + | <span class="exam">(d) Use the Fundamental Theorem of Calculus to compute  <math style="vertical-align: -15px">\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2t\,dt\bigg)</math>  without first computing the integral. |
− | <span class="exam"> | + | <span class="exam">(e) Use the Fundamental Theorem of Calculus to compute  <math style="vertical-align: -15px">\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2tdt\bigg)</math>  without first computing the integral. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 23: | Line 23: | ||
::So, we get <math style="vertical-align: -14px">\int e^u~du=e^u+C=e^{x^2}+C</math>. | ::So, we get <math style="vertical-align: -14px">\int e^u~du=e^u+C=e^{x^2}+C</math>. | ||
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 102: | Line 103: | ||
::<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2t~dt\bigg)\,=\,\sin(x^2)2x.</math> | ::<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2t~dt\bigg)\,=\,\sin(x^2)2x.</math> | ||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
Revision as of 19:09, 18 February 2017
We would like to evaluate
(a) Compute .
(b) Find .
(c) State the Fundamental Theorem of Calculus.
(d) Use the Fundamental Theorem of Calculus to compute without first computing the integral.
(e) Use the Fundamental Theorem of Calculus to compute without first computing the integral.
Foundations: |
---|
How would you integrate ? |
|
|
Solution:
(a)
Step 1: |
---|
We proceed using -substitution. Let . Then, . |
Since this is a definite integral, we need to change the bounds of integration. |
Plugging our values into the equation , we get and . |
Step 2: |
---|
So, we have |
|
(b)
Step 1: |
---|
From part (a), we have . |
Step 2: |
---|
If we take the derivative, we get , since is just a constant. |
(c)
Step 1: |
---|
The Fundamental Theorem of Calculus has two parts. |
The Fundamental Theorem of Calculus, Part 1 |
Let be continuous on and let . |
Then, is a differentiable function on and . |
Step 2: |
---|
The Fundamental Theorem of Calculus, Part 2 |
Let be continuous on and let be any antiderivative of . |
Then, . |
(d) |
---|
By the Fundamental Theorem of Calculus, Part 1, |
|
Final Answer: |
---|
(a) |
(b) |
(c) The Fundamental Theorem of Calculus, Part 1 |
Let be continuous on and let . |
Then, is a differentiable function on and . |
The Fundamental Theorem of Calculus, Part 2 |
Let be continuous on and let be any antiderivative of . |
Then, . |
(d) |