Difference between revisions of "009A Sample Final 2, Problem 10"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 2: | Line 2: | ||
::<math>f(x)=\frac{4x}{x^2+1}</math> | ::<math>f(x)=\frac{4x}{x^2+1}</math> | ||
| − | + | <span class="exam">(a) Find all local maximum and local minimum values of <math>f,</math> find all intervals where <math>f</math> is increasing and all intervals where <math>f</math> is decreasing. | |
| − | + | <span class="exam">(b) Find all inflection points of the function <math>f,</math> find all intervals where the function <math>f</math> is concave upward and all intervals where <math>f</math> is concave downward. | |
| − | + | <span class="exam">(c) Find all horizontal asymptotes of the graph <math>y=f(x).</math> | |
| − | + | <span class="exam">(d) Sketch the graph of <math>y=f(x).</math> | |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| Line 21: | Line 21: | ||
| | | | ||
|} | |} | ||
| + | |||
'''Solution:''' | '''Solution:''' | ||
| Line 89: | Line 90: | ||
| | | | ||
|} | |} | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Revision as of 17:57, 18 February 2017
Let
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{4x}{x^2+1}}
(a) Find all local maximum and local minimum values of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f,} find all intervals where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is increasing and all intervals where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is decreasing.
(b) Find all inflection points of the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f,} find all intervals where the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is concave upward and all intervals where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is concave downward.
(c) Find all horizontal asymptotes of the graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x).}
(d) Sketch the graph of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x).}
| Foundations: |
|---|
Solution:
(a)
| Step 1: |
|---|
| Step 2: |
|---|
(b)
| Step 1: |
|---|
| Step 2: |
|---|
(c)
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) |