Difference between revisions of "009C Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Consider the infinite series <math>\sum_{n=2}^\infty 2\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math>
 
<span class="exam">Consider the infinite series <math>\sum_{n=2}^\infty 2\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math>
  
::<span class="exam">a) Find an expression for the <math style="vertical-align: 0px">n</math>th partial sum <math style="vertical-align: -3px">s_n</math> of the series.
+
<span class="exam">(a) Find an expression for the <math style="vertical-align: 0px">n</math>th partial sum <math style="vertical-align: -3px">s_n</math> of the series.
::<span class="exam">b) Compute <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} s_n.</math>
+
 
 +
<span class="exam">(b) Compute <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} s_n.</math>
  
  

Revision as of 17:16, 18 February 2017

Consider the infinite series

(a) Find an expression for the th partial sum of the series.

(b) Compute


Foundations:  
The th partial sum, for a series is defined as

       


Solution:

(a)

Step 1:  
We need to find a pattern for the partial sums in order to find a formula.
We start by calculating . We have
       
Step 2:  
Next, we calculate and We have
       
and
       
Step 3:  
If we look at and we notice a pattern.
From this pattern, we get the formula
       

(b)

Step 1:  
From Part (a), we have
       
Step 2:  
We now calculate
We get
       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam