Difference between revisions of "009B Sample Midterm 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam"> Evaluate
 
<span class="exam"> Evaluate
  
::<span class="exam">a) &nbsp; <math style="vertical-align: -14px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math>  
+
<span class="exam">(a) &nbsp; <math style="vertical-align: -14px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math>  
  
::<span class="exam">b) &nbsp; <math style="vertical-align: -14px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx</math>
+
<span class="exam">(b) &nbsp; <math style="vertical-align: -14px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx</math>
  
  

Revision as of 17:12, 18 February 2017

Evaluate

(a)  

(b)  


Foundations:  
How would you integrate

        You could use -substitution.

        Let
        Then,

        Thus,

       


Solution:

(a)

Step 1:  
We multiply the product inside the integral to get

       

Step 2:  
We integrate to get
      
We now evaluate to get

       

(b)

Step 1:  
We use -substitution.
Let
Then, and
Also, we need to change the bounds of integration.
Plugging in our values into the equation
we get and
Therefore, the integral becomes
       
Step 2:  
We now have

       

Therefore,
       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam