Difference between revisions of "009A Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam">Consider the following function <math> f:</math>
+
<span class="exam">Consider the following function <math style="vertical-align: -5px"> f:</math>
 
::<math>f(x) = \left\{
 
::<math>f(x) = \left\{
 
     \begin{array}{lr}
 
     \begin{array}{lr}
Line 8: Line 8:
 
</math>
 
</math>
  
<span class="exam">(a) Find <math> \lim_{x\rightarrow 1^-} f(x).</math>
+
<span class="exam">(a) Find <math style="vertical-align: -15px"> \lim_{x\rightarrow 1^-} f(x).</math>
  
<span class="exam">(b) Find <math> \lim_{x\rightarrow 1^+} f(x).</math>
+
<span class="exam">(b) Find <math style="vertical-align: -15px"> \lim_{x\rightarrow 1^+} f(x).</math>
  
<span class="exam">(c) Find <math> \lim_{x\rightarrow 1} f(x).</math>
+
<span class="exam">(c) Find <math style="vertical-align: -13px"> \lim_{x\rightarrow 1} f(x).</math>
  
<span class="exam">(d) Is <math>f</math> continuous at <math>x=1?</math> Briefly explain.
+
<span class="exam">(d) Is <math style="vertical-align: -5px">f</math> continuous at <math style="vertical-align: -1px">x=1?</math> Briefly explain.
  
  

Revision as of 16:39, 18 February 2017

Consider the following function

(a) Find

(b) Find

(c) Find

(d) Is continuous at Briefly explain.


Foundations:  
1. If
        then
2. Definition of continuous
        is continuous at if


Solution:

(a)

Step 1:  
Notice that we are calculating a left hand limit.
Thus, we are looking at values of that are smaller than
Using the definition of , we have
       
Step 2:  
Now, we have

       

(b)

Step 1:  
Notice that we are calculating a right hand limit.
Thus, we are looking at values of that are bigger than
Using the definition of , we have
       
Step 2:  
Now, we have

       

(c)

Step 1:  
From (a) and (b), we have
       
and
       
Step 2:  
Since
       
we have
       

(d)

Step 1:  
From (c), we have
       
Also,
       
Step 2:  
Since
       
is continuous at


Final Answer:  
    (a)    
    (b)    
    (c)    
    (d)     is continuous at since

Return to Sample Exam