Difference between revisions of "009A Sample Midterm 2"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
<span class="exam"> Evaluate the following limits.
 
<span class="exam"> Evaluate the following limits.
  
<span class="exam">(a) Find <math>\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}</math>
+
<span class="exam">(a) Find <math style="vertical-align: -14px">\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}</math>
  
<span class="exam">(b) Find <math>\lim _{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)} </math>
+
<span class="exam">(b) Find <math style="vertical-align: -19px">\lim _{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)} </math>
  
<span class="exam">(c) Evaluate <math>\lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x) </math>
+
<span class="exam">(c) Evaluate <math style="vertical-align: -20px">\lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x) </math>
  
 
== [[009A_Sample Midterm 2,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
== [[009A_Sample Midterm 2,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==

Revision as of 14:59, 18 February 2017

This is a sample, and is meant to represent the material usually covered in Math 9A for the midterm. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Evaluate the following limits.

(a) Find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}}

(b) Find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)} }

(c) Evaluate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x) }

 Problem 2 

The function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=3x^7-8x+2} is a polynomial and therefore continuous everywhere.

(a) State the Intermediate Value Theorem.

(b) Use the Intermediate Value Theorem to show that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} has a zero in the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [0,1].}

 Problem 3 

Use the definition of the derivative to find   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}}   for the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\frac{1+x}{3x}.}

 Problem 4 

Find the derivatives of the following functions. Do not simplify.

(a)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=x^3(x^{\frac{4}{3}}-1)}

(b)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=\frac{x^3+x^{-3}}{1+6x}} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x>0}

 Problem 5 

Find the derivatives of the following functions. Do not simplify.

(a)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\tan^3(7x^2+5) }

(b)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=\sin(\cos(e^x)) }

(c)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=\frac{(5x^2+7x)^3}{\ln(x^2+1)} }