Difference between revisions of "009A Sample Midterm 3, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
− | <span class="exam">Find the following limits: | + | <span class="exam"> Find the following limits: |
− | <span class="exam">(a) If <math>\lim _{x\rightarrow 3} \bigg(\frac{f(x)}{2x}+1\bigg)=2,</math> find <math>\lim _{x\rightarrow 3} f(x).</math> | + | <span class="exam">(a) If <math style="vertical-align: -16px">\lim _{x\rightarrow 3} \bigg(\frac{f(x)}{2x}+1\bigg)=2,</math> find <math style="vertical-align: -13px">\lim _{x\rightarrow 3} f(x).</math> |
− | <span class="exam">(b) Find <math>\lim _{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}. </math> | + | <span class="exam">(b) Find <math style="vertical-align: -19px">\lim _{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}. </math> |
− | <span class="exam">(c) Evaluate <math>\lim _{x\rightarrow \infty} \frac{-2x^3-2x+3}{3x^3+3x^2-3}. </math> | + | <span class="exam">(c) Evaluate <math style="vertical-align: -16px">\lim _{x\rightarrow \infty} \frac{-2x^3-2x+3}{3x^3+3x^2-3}. </math> |
Line 11: | Line 11: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |'''1.''' If <math>\lim_{x\rightarrow a} g(x)\neq 0</math> | + | |'''1.''' If <math style="vertical-align: -13px">\lim_{x\rightarrow a} g(x)\neq 0,</math> we have |
|- | |- | ||
| <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math> | | <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math> | ||
|- | |- | ||
− | |'''2.''' <math>\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math> | + | |'''2.''' <math style="vertical-align: -15px">\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math> |
|} | |} | ||
Revision as of 15:31, 18 February 2017
Find the following limits:
(a) If find
(b) Find
(c) Evaluate
Foundations: |
---|
1. If we have |
2. |
Solution:
(a)
Step 1: |
---|
First, we have |
Therefore, |
Step 2: |
---|
Since we have |
|
Multiplying both sides by we get |
(b)
Step 1: |
---|
First, we write |
Step 2: |
---|
Now, we have |
|
(c)
Step 1: |
---|
First, we have |
Step 2: |
---|
Now, we use the properties of limits to get |
|
Final Answer: |
---|
(a) |
(b) |
(c) |