Difference between revisions of "009A Sample Midterm 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam">Find the following limits:
+
<span class="exam"> Find the following limits:
  
<span class="exam">(a) If <math>\lim _{x\rightarrow 3} \bigg(\frac{f(x)}{2x}+1\bigg)=2,</math> find <math>\lim _{x\rightarrow 3} f(x).</math>
+
<span class="exam">(a) If <math style="vertical-align: -16px">\lim _{x\rightarrow 3} \bigg(\frac{f(x)}{2x}+1\bigg)=2,</math> find <math style="vertical-align: -13px">\lim _{x\rightarrow 3} f(x).</math>
  
<span class="exam">(b) Find <math>\lim _{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}. </math>
+
<span class="exam">(b) Find <math style="vertical-align: -19px">\lim _{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}. </math>
  
<span class="exam">(c) Evaluate <math>\lim _{x\rightarrow \infty} \frac{-2x^3-2x+3}{3x^3+3x^2-3}. </math>
+
<span class="exam">(c) Evaluate <math style="vertical-align: -16px">\lim _{x\rightarrow \infty} \frac{-2x^3-2x+3}{3x^3+3x^2-3}. </math>
  
  
Line 11: Line 11:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|'''1.''' If <math>\lim_{x\rightarrow a} g(x)\neq 0</math>, we have
+
|'''1.''' If <math style="vertical-align: -13px">\lim_{x\rightarrow a} g(x)\neq 0,</math> we have
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math>
 
|-
 
|-
|'''2.''' <math>\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math>
+
|'''2.''' <math style="vertical-align: -15px">\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math>
 
|}
 
|}
  

Revision as of 15:31, 18 February 2017

Find the following limits:

(a) If find

(b) Find

(c) Evaluate


Foundations:  
1. If we have
       
2.


Solution:

(a)

Step 1:  
First, we have
       
Therefore,
       
Step 2:  
Since we have

       

Multiplying both sides by we get
       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we have

       

(c)

Step 1:  
First, we have
       
Step 2:  
Now, we use the properties of limits to get

       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam