|
|
Line 1: |
Line 1: |
| <span class="exam">Find the following limits: | | <span class="exam">Find the following limits: |
| | | |
− | <span class="exam">a) If <math>\lim _{x\rightarrow 3} \bigg(\frac{f(x)}{2x}+1\bigg)=2,</math> find <math>\lim _{x\rightarrow 3} f(x).</math> | + | <span class="exam">(a) If <math>\lim _{x\rightarrow 3} \bigg(\frac{f(x)}{2x}+1\bigg)=2,</math> find <math>\lim _{x\rightarrow 3} f(x).</math> |
| | | |
− | <span class="exam">b) Find <math>\lim _{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}. </math> | + | <span class="exam">(b) Find <math>\lim _{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}. </math> |
| | | |
− | <span class="exam">c) Evaluate <math>\lim _{x\rightarrow \infty} \frac{-2x^3-2x+3}{3x^3+3x^2-3}. </math> | + | <span class="exam">(c) Evaluate <math>\lim _{x\rightarrow \infty} \frac{-2x^3-2x+3}{3x^3+3x^2-3}. </math> |
| | | |
| | | |
Revision as of 14:37, 18 February 2017
Find the following limits:
(a) If
find
(b) Find
(c) Evaluate
Foundations:
|
1. If , we have
|
|
2.
|
Solution:
(a)
Step 1:
|
First, we have
|
|
Therefore,
|
|
(b)
Step 1:
|
First, we write
|
|
Step 2:
|
Now, we have
|
|
(c)
Step 1:
|
First, we have
|
|
Step 2:
|
Now, we use the properties of limits to get
|
|
Final Answer:
|
(a)
|
(b)
|
(c)
|
Return to Sample Exam